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Allen-Cahn equation

W' (u®)
ou® = Au® > t >0, x € (),
€
8 €
Ov 169
u“(x,0) = uy(x) x € (),

where 2 C R" is a bounded domain with smooth boundary,
v is an outer unit normal to 8, € > 0, W (u®) := (1 — (u)?)2.
For t > 0, define varifolds V. as
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dp; = <§|Vu€(a3,t)\2 |
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where ¢ € Ce(Gn-1(R)), fic := oy, 0 = [, \/2W (€) d§ = 3.
@ lImanen (1993), Tonegawa (2003), Liu-Sato-Tonegawa (2010),
Takasao-Tonegawa (to appear) (without boundary)
V.= converges to an integral varifold V; up to subsequence for almost all
t > 0. Moreover, V; is Brakke’s weak solution of Mean Curvature Flow
(MCF for short).

Our Aim
To study the boundary behavior of V;.

W(use(w, t))> I

¢ (x, I — e ® i) dups,

Heuristic observation

Formally defineI'y = {x € @ : lim. gu® # £1} ~ spt V;,then T, is
solution of MCF and 7i. is an approximate unit normal vector of I';. Since
we impose the Neumann boundary condition, I'; should intersect 9¢2
with 90° degree.
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@ Does V¢ converge up to boundary ?
@ What is the right notion of the boundary of Brakke’s weak solutions ?

Related study
@ Level set methods (Viscosity solutions)
@ Chen-Giga-Goto (1991), Evans-Spruck (1991)
Existence of a generalized MCF (without boundary)
@ Giga-Sato (1991), M.-H. Sato (1994)
Existence of a generalized MCF (with boundary)
@ Evans-Soner-Souganidis (1992)
Convergence of (AC). (without boundary)
@ Katsoulakis-Kossioris-Reitich (1995), Barles-Souganidis (1998)
Convergence of (AC). (with boundary)

@ Matched asymptotic expansion

@ X. Chen (1992)
Asymptotic behavior of (AC). as € — 0 (without/with boundary)
@ Geometric measure theory
@ Brakke (1978)
Existence and regularity of a weak MCF (without boundary)
@ Hutchinson-Tonegawa (2000), Tonegawa (2004)
Convergence of the stationary problem of (AC). (without/with boundary)

It is not well-known how to formulate the boundary conditions for
Brakke’s weak MCF.

Assumption
@ (2 Is bounded, strictly convex.

e e W ug
o luslloe <1, sup.sg [o(GIVug|? + Y)Y da < oo

Theorem (Tonegawa-M.)

There exist a subsequence u;‘ and a family of Radon measures { i }+>0
such that for allt > 0, u;* — p; ase; — 0 on Q. Moreover, p; is
rectifiable on Q for almost allt > 0.

For almost all t > 0, let V; be an associated rectifiable varifold with g,
such that || V;|| = u: on Q.
Theorem (Tonegawa-M.)

@ (Boundedness of first variation) First variation of V;, which denote by
oV, Is bounded up to boundary for almost allt > 0. In fact, for'T > 0

T
/ 16V4|[(R) dt < oo.
0

@ (Generalized 90° degree condition) Let

0Viloa(9) := 0Viaa(g — (g - v)v)
forg € C(9€2 : R™). Then for almost allt > 0,
16Vila+0Vi ol < |IVil], and there exists h = h(t) € L*(|| Vi)
such that
0Vila+dVilgo= —h(t)|IViI-
@ (Brakke’s inequality) For ¢ € C*(2 x [0, 00) ; RT) with
Vo(,t)-v=00n09%2andforany0 < t; < t; < oo, we have

[ocoamil]”, < [ [ (~oln?+Vo-n+ o) dvila
- Y t bty — . o t ¢ .

Generalized 90° degree condition
Assume V; Is an associated varifold with some smooth hypersurface M,.
Then by Gauss’ divergence theorem,

o0Vi(g) = / divyr, gdrm "t = —/ g-hdx""t+ ) g-vdo
M, M, M

for g € C1(Q : R™), where ~ is a binormal vector of M;. Hence if

M; L 09, then [,,, g -~do = 0 for any vector field g, which satisfies
g(xz) € Tan(99, x) for all x € N. Therefore ||6V;| 30|l < || V-

How to prove Brakke’s inequality ?

Let ¢ € C*°(Q) be a non-negative test function with V¢ - v = 0 and let

i = (e op - V)

Then we get

d - 8|W’(u€) 2
a/ﬂ¢d“t—_/ﬂs¢(_Au i - ) dx
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+ [ (Vo) @Vzﬂz | W(:E)> do.

BIY)
=: I5(t) + I5(t) + I5(t) + I5(t).
We may obtain for almostallt > 0

olimsup I (¢t) < —/ o|h ZdHWH;
Q

e—0

oI3(t) = ~8V:(V@) = ~0Vi(V9) = | V- hd|Vil;

Lo
@dg;dt — 0, hence / I;(t)dt — 0;
t
@I3(t) = 0since V¢ - v = 0 on 912.
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