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Allen-Cahn equation

∂tu
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ε2
t > 0, x ∈ Ω,

∂uε

∂ν

∣∣∣
∂Ω

= 0 t > 0,

uε(x, 0) = uε
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(AC)ε

where Ω ⊂ Rn is a bounded domain with smooth boundary,
ν is an outer unit normal to ∂Ω, ε > 0, W (uε) := 1

2
(1 − (uε)2)2.

For t > 0, define varifolds V ε
t as

dµε
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ε

2
|∇uε(x, t)|2 +

W (uε(x, t))

ε

)
dx

V ε
t (ϕ) :=

1

σ

∫
Ω∩{|∇uε(·,t)|≠0}

ϕ (x, I − n⃗ε ⊗ n⃗ε) dµε
t,

where ϕ ∈ Cc(Gn−1(Ω)), n⃗ε :=
∇uε

|∇uε|, σ :=
∫ 1
−1

√
2W (ξ) dξ = 4

3
.

Ilmanen (1993), Tonegawa (2003), Liu-Sato-Tonegawa (2010),
Takasao-Tonegawa (to appear) (without boundary)
V ε
t converges to an integral varifold Vt up to subsequence for almost all

t ≥ 0. Moreover, Vt is Brakke’s weak solution of Mean Curvature Flow
(MCF for short).

Our Aim
To study the boundary behavior of Vt.

Heuristic observation
Formally define Γt = {x ∈ Ω : limε↓0 u

ε ̸= ±1} ≃ sptVt, then Γt is
solution of MCF and n⃗ε is an approximate unit normal vector of Γt. Since
we impose the Neumann boundary condition, Γt should intersect ∂Ω
with 90◦ degree.

1 Does V ε
t converge up to boundary ?

2 What is the right notion of the boundary of Brakke’s weak solutions ?
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It is not well-known how to formulate the boundary conditions for
Brakke’s weak MCF.

Assumption

Ω is bounded, strictly convex.

∥uε
0∥∞ ≤ 1, supε>0

∫
Ω(

ε
2
|∇uε

0|2 +
W (uε

0)

ε
) dx < ∞

Theorem (Tonegawa-M.)
There exist a subsequence µεi

t and a family of Radon measures {µt}t>0

such that for all t > 0, µεi
t ⇀ µt as εi → 0 on Ω. Moreover, µt is

rectifiable on Ω for almost all t ≥ 0.

For almost all t ≥ 0, let Vt be an associated rectifiable varifold with µt

such that ∥Vt∥ = µt on Ω.
Theorem (Tonegawa-M.)

(Boundedness of first variation) First variation of Vt, which denote by
δVt, is bounded up to boundary for almost all t ≥ 0. In fact, for T > 0∫ T

0

∥δVt∥(Ω) dt < ∞.

(Generalized 90◦ degree condition) Let

δVt⌊⊤∂Ω(g) := δVt⌊∂Ω(g − (g · ν)ν)

for g ∈ C(∂Ω : Rn). Then for almost all t ≥ 0,
∥δVt⌊Ω+δVt⌊⊤∂Ω∥ ≪ ∥Vt∥, and there exists h = h(t) ∈ L2(∥Vt∥)
such that

δVt⌊Ω+δVt⌊⊤∂Ω= −h(t)∥Vt∥.
(Brakke’s inequality) For ϕ ∈ C1(Ω × [0,∞) ; R+) with
∇ϕ(·, t) · ν = 0 on ∂Ω and for any 0 ≤ t1 < t2 < ∞, we have∫

Ω

ϕ(·, t) d∥Vt∥
∣∣∣t2
t=t1

≤
∫ t2

t1

∫
Ω

(
− ϕ|h|2 + ∇ϕ · h + ∂tϕ

)
d∥Vt∥dt.

Generalized 90◦ degree condition
Assume Vt is an associated varifold with some smooth hypersurface Mt.
Then by Gauss’ divergence theorem,

δVt(g) =

∫
Mt

divMt
g dH

n−1 = −
∫
Mt

g · hdH
n−1 +

∫
∂Mt

g · γ dσ

for g ∈ C1(Ω : Rn), where γ is a binormal vector of Mt. Hence if
Mt ⊥ ∂Ω, then

∫
∂Mt

g · γ dσ = 0 for any vector field g, which satisfies
g(x) ∈ Tan(∂Ω, x) for all x ∈ ∂Ω. Therefore ∥δVt⌊⊤∂Ω∥ ≪ ∥Vt∥.
How to prove Brakke’s inequality ?
Let ϕ ∈ C∞(Ω) be a non-negative test function with ∇ϕ · ν ≡ 0 and let

dξεt :=

(
ε

2
|∇uε(x, t)|2 −

W (uε(x, t))

ε

)
dx.

Then we get
d

dt

∫
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ϕdµε
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∫
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εϕ

(
−∆uε +

W ′(uε)

ε

)2

dx

−
∫
Ω

(D2ϕ : I − n⃗ε ⊗ n⃗ε) dµ
ε
t

+

∫
Ω

(D2ϕ : n⃗ε ⊗ n⃗ε) dξ
ε
t

+

∫
∂Ω

(∇ϕ · ν)
(
ε

2
|∇uε|2 +

W (uε)

ε

)
dσ.

=: Iε
1(t) + Iε

2(t) + Iε
3(t) + Iε

4(t).

We may obtain for almost all t ≥ 0

lim sup
ε→0

Iε
1(t) ≤ −

∫
Ω

ϕ|h|2 d∥Vt∥;

Iε
2(t) = −δV ε

t (∇ϕ) → −δVt(∇ϕ) =

∫
Ω

∇ϕ · hd∥Vt∥;

dξεtdt ⇀ 0, hence
∫ t2

t1

Iε
3(t) dt → 0;

Iε
4(t) ≡ 0 since ∇ϕ · ν = 0 on ∂Ω.
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