Convergence of the Allen-Cahn equation with Neumann

boundary conditions

Masashi Mizuno (College of Science and Technology, Nihon University, JAPAN)
e-mail: mizuno@math.cst.nihon-u.ac.jp

Allen-Cahn equation

$$
\left\{\begin{align*}
\partial_{t} u^{\varepsilon} & =\Delta u^{\varepsilon}-\frac{W^{\prime}\left(u^{\varepsilon}\right)}{\varepsilon^{2}} & & t>0, x \in \Omega \tag{AC}\\
\left.\frac{\partial u^{\varepsilon}}{\partial \nu}\right|_{\partial \Omega} & =0 & & t>0, \\
u^{\varepsilon}(x, 0) & =u_{0}^{\varepsilon}(x) & & x \in \Omega,
\end{align*}\right.
$$

where $\Omega \subset \mathbb{R}^{n}$ is a bounded domain with smooth boundary, ν is an outer unit normal to $\partial \Omega, \varepsilon>0, W\left(u^{\varepsilon}\right):=\frac{1}{2}\left(1-\left(u^{\varepsilon}\right)^{2}\right)^{2}$.
For $t>0$, define varifolds V_{t}^{ε} as

$$
\begin{aligned}
d \mu_{t}^{\varepsilon} & :=\left(\frac{\varepsilon}{2}\left|\nabla u^{\varepsilon}(x, t)\right|^{2}+\frac{W\left(u^{\varepsilon}(x, t)\right)}{\varepsilon}\right) d x \\
V_{t}^{\varepsilon}(\phi) & :=\frac{1}{\sigma} \int_{\Omega \cap\left\{\left|\nabla u^{\varepsilon}(\cdot, t)\right| \neq 0\right\}} \phi\left(x, I-\vec{n}_{\varepsilon} \otimes \vec{n}_{\varepsilon}\right) d \mu_{t}^{\varepsilon}
\end{aligned}
$$

where $\phi \in C_{c}\left(G_{n-1}(\Omega)\right), \vec{n}_{\varepsilon}:=\frac{\nabla u^{\varepsilon}}{\left|\nabla u^{\varepsilon}\right|}, \sigma:=\int_{-1}^{1} \sqrt{2 W(\xi)} d \xi=\frac{4}{3}$. - Ilmanen (1993), Tonegawa (2003), Liu-Sato-Tonegawa (2010),

Takasao-Tonegawa (to appear) (without boundary)
$\boldsymbol{V}_{t}^{\varepsilon}$ converges to an integral varifold \boldsymbol{V}_{t} up to subsequence for almost all $\boldsymbol{t} \geq \mathbf{0}$. Moreover, $\boldsymbol{V}_{\boldsymbol{t}}$ is Brakke's weak solution of Mean Curvature Flow (MCF for short).

Our Aim

To study the boundary behavior of $\boldsymbol{V}_{\boldsymbol{t}}$.
Heuristic observation
Formally define $\Gamma_{t}=\left\{x \in \Omega: \lim _{\varepsilon \downarrow 0} u^{\varepsilon} \neq \pm 1\right\} \simeq \operatorname{spt} V_{t}$, then Γ_{t} is solution of MCF and \vec{n}_{ε} is an approximate unit normal vector of Γ_{t}. Since we impose the Neumann boundary condition, Γ_{t} should intersect $\partial \Omega$ with 90° degree.

(1) Does V_{t}^{ε} converge up to boundary ?
(2) What is the right notion of the boundary of Brakke's weak solutions ?

Related study

- Level set methods (Viscosity solutions)
- Chen-Giga-Goto (1991), Evans-Spruck (1991)

Existence of a generalized MCF (without boundary)

- Giga-Sato (1991), M.-H. Sato (1994)

Existence of a generalized MCF (with boundary)

- Evans-Soner-Souganidis (1992)

Convergence of $(\mathrm{AC})_{\varepsilon}$ (without boundary)

- Katsoulakis-Kossioris-Reitich (1995), Barles-Souganidis (1998)

Convergence of $(\mathrm{AC})_{\varepsilon}$ (with boundary)

- Matched asymptotic expansion
- X. Chen (1992)

Asymptotic behavior of $(\mathrm{AC})_{\varepsilon}$ as $\varepsilon \rightarrow 0$ (without/with boundary)

- Geometric measure theory
- Brakke (1978)

Existence and regularity of a weak MCF (without boundary)

- Hutchinson-Tonegawa (2000),Tonegawa (2004)

Convergence of the stationary problem of $(\mathrm{AC})_{\varepsilon}$ (without/with boundary) It is not well-known how to formulate the boundary conditions for Brakke's weak MCF.

Assumption

- Ω is bounded, strictly convex.
$-\left\|u_{0}^{\varepsilon}\right\|_{\infty} \leq 1, \quad \sup _{\varepsilon>0} \int_{\Omega}\left(\frac{\varepsilon}{2}\left|\nabla u_{0}^{\varepsilon}\right|^{2}+\frac{W\left(u_{0}^{\varepsilon}\right)}{\varepsilon}\right) d x<\infty$

Theorem (Tonegawa-M.)

There exist a subsequence $\mu_{t}^{\varepsilon_{i}}$ and a family of Radon measures $\left\{\mu_{t}\right\}_{t>0}$ such that for all $t>0, \mu_{t}^{\varepsilon_{i}} \rightharpoonup \mu_{t}$ as $\varepsilon_{i} \rightarrow 0$ on $\bar{\Omega}$. Moreover, μ_{t} is rectifiable on $\bar{\Omega}$ for almost all $t \geq 0$.

For almost all $t \geq 0$, let V_{t} be an associated rectifiable varifold with μ_{t} such that $\left\|V_{t}\right\|=\mu_{t}$ on $\bar{\Omega}$.

Theorem (Tonegawa-M.)

- (Boundedness of first variation) First variation of V_{t}, which denote by
$\delta V_{\boldsymbol{t}}$, is bounded up to boundary for almost all $\boldsymbol{t} \geq \mathbf{0}$. In fact, for $\boldsymbol{T}>\mathbf{0}$

$$
\int_{0}^{T}\left\|\delta V_{t}\right\|(\bar{\Omega}) d t<\infty
$$

- (Generalized 90° degree condition) Let

$$
\delta V_{t} \bigsqcup_{\partial \Omega}^{\top}(g):=\delta V_{t}\left\lfloor_{\partial \Omega}(g-(g \cdot \nu) \nu)\right.
$$

for $g \in C\left(\partial \Omega: \mathbb{R}^{n}\right)$. Then for almost all $t \geq 0$,
$\| \delta V_{t}\left\lfloor_{\Omega}+\delta V_{t}\left\lfloor_{\partial \Omega}^{\top}\|\ll\| V_{t} \|\right.\right.$, and there exists $h=h(t) \in L^{2}\left(\left\|V_{t}\right\|\right)$ such that

$$
\delta V_{t}\left\lfloor_{\Omega}+\delta V_{t}\left\lfloor_{\partial \Omega}^{\top}=-h(t)\left\|V_{t}\right\|\right.\right.
$$

- (Brakke's inequality) For $\phi \in C^{1}\left(\bar{\Omega} \times[0, \infty) ; \mathbb{R}^{+}\right)$with
$\nabla \phi(\cdot, t) \cdot \nu=0$ on $\partial \Omega$ and for any $0 \leq t_{1}<t_{2}<\infty$, we have

$$
\left.\int_{\bar{\Omega}} \phi(\cdot, t) d\left\|V_{t}\right\|\right|_{t=t_{1}} ^{t_{2}} \leq \int_{t_{1}}^{t_{2}} \int_{\bar{\Omega}}\left(-\phi|h|^{2}+\nabla \phi \cdot h+\partial_{t} \phi\right) d\left\|V_{t}\right\| d t
$$

Generalized 90° degree condition

Assume V_{t} is an associated varifold with some smooth hypersurface M_{t}. Then by Gauss' divergence theorem,

$$
\delta V_{t}(g)=\int_{M_{t}} \operatorname{div}_{M_{t}} g d \mathscr{H}^{n-1}=-\int_{M_{t}} g \cdot h d_{\mathscr{H}} n^{n-1}+\int_{\partial M_{t}} g \cdot \gamma d \sigma
$$

for $g \in C^{1}\left(\bar{\Omega}: \mathbb{R}^{n}\right)$, where γ is a binormal vector of M_{t}. Hence if $M_{t} \perp \partial \Omega$, then $\int_{\partial M_{t}} \boldsymbol{g} \cdot \gamma \boldsymbol{d} \boldsymbol{\sigma}=0$ for any vector field g, which satisfies $\boldsymbol{g}(\boldsymbol{x}) \in \operatorname{Tan}(\partial \Omega, \boldsymbol{x})$ for all $\boldsymbol{x} \in \partial \Omega$. Therefore $\| \delta V_{t}\left\llcorner_{\partial \Omega}^{\top}\|\ll\| V_{t} \|\right.$.
How to prove Brakke's inequality ?
Let $\phi \in C^{\infty}(\bar{\Omega})$ be a non-negative test function with $\nabla \phi \cdot \nu \equiv 0$ and let

$$
d \xi_{t}^{\varepsilon}:=\left(\frac{\varepsilon}{2}\left|\nabla u^{\varepsilon}(x, t)\right|^{2}-\frac{W\left(u^{\varepsilon}(x, t)\right)}{\varepsilon}\right) d x
$$

Then we get

$$
\begin{aligned}
\frac{d}{d t} \int_{\Omega} \phi d \mu_{t}^{\varepsilon}= & -\int_{\Omega} \varepsilon \phi\left(-\Delta u^{\varepsilon}+\frac{W^{\prime}\left(u^{\varepsilon}\right)}{\varepsilon}\right)^{2} d x \\
& -\int_{\Omega}\left(D^{2} \phi: I-\vec{n}_{\varepsilon} \otimes \vec{n}_{\varepsilon}\right) d \mu_{t}^{\varepsilon} \\
& +\int_{\Omega}\left(D^{2} \phi: \vec{n}_{\varepsilon} \otimes \vec{n}_{\varepsilon}\right) d \xi_{t}^{\varepsilon} \\
& +\int_{\partial \Omega}(\nabla \phi \cdot \nu)\left(\frac{\varepsilon}{2}\left|\nabla u^{\varepsilon}\right|^{2}+\frac{W\left(u^{\varepsilon}\right)}{\varepsilon}\right) d \sigma \\
=: & I_{1}^{\varepsilon}(t)+I_{2}^{\varepsilon}(t)+I_{3}^{\varepsilon}(t)+I_{4}^{\varepsilon}(t)
\end{aligned}
$$

We may obtain for almost all $t \geq 0$
$\bigcirc \underset{\varepsilon \rightarrow 0}{\limsup } I_{1}^{\varepsilon}(t) \leq-\int_{\Omega} \phi|h|^{2} d\left\|V_{t}\right\| ;$

- $I_{2}^{\varepsilon}(t)=-\delta V_{t}^{\varepsilon}(\nabla \phi) \rightarrow-\delta V_{t}(\nabla \phi)=\int_{\Omega} \nabla \phi \cdot h d\left\|V_{t}\right\| ;$
- $d \xi_{t}^{\varepsilon} d t \rightharpoonup 0$, hence $\int_{t_{1}}^{t_{2}} I_{3}^{\varepsilon}(t) d t \rightarrow 0 ;$
- $I_{4}^{\varepsilon}(t) \equiv 0$ since $\nabla \phi \cdot \nu=0$ on $\partial \Omega$.

Reference
M. Mizuno and Y. Tonegawa, SIAM J. Math. Anal. 47 (2015), 1906-1932.

