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CHAPTER 1

Introduction

1. Introduction

In this thesis, we consider Hölder continuity for weak solutions to non-linear degenerate
parabolic equations. The porous medium equation or the p-harmonic heat flow equation
is one of the non-linear degenerate parabolic equations. It is well-known that the solution
of the non-linear degenerate parabolic equation is not generally smooth. For example, the
Barenblatt solution is an explicit solution to the porous medium equation which is not
differentiable.

The Hölder continuity of solutions of these equations was firstly studied by Caffarelli-
Friedman [11], DiBenedetto-Friedman [20] and Wiegner [51]. Their results however did
not include the case of equations with an external force. It is important to consider the
non-linear degenerate parabolic equation with an external force in the application. If we
consider the non-linearly perturbed problem, the external term is necessarily treated and
it is worth to consider regularity theory for the non-linear degenerate parabolic problem
with an external force.

In the presented thesis, we mainly focus on the regularity problem for the non-linear
degenerate parabolic equation with an external force and we apply the regularity result
to study the large time asymptotic behavior of the solution for the non-linearly perturbed
problem.

1.1. Hölder estimates for solutions of the porous medium equations with
external forces. In Chapter 2, we study interior Hölder regularity of weak solutions for
the Cauchy problem of the porous medium equation with external forces:

(1.1)

{
∂tu−∆uα = div f + g, t > 0 , x ∈ Rn,

u(0, x) = u0(x) ≥ 0, x ∈ Rn,

where u = u(t, x) : (0,∞)×Rn → R is the unknown function, f = f(t, x) : (0,∞)×Rn →
Rn, g = g(t, x) : (0,∞) × Rn → R and u0 = u0(x) : Rn → [0,∞) are given external and
initial data and α > 1 is a constant. When f, g ≡ 0, the equation (1.1) is called a porous
medium equation. The porous medium equation is described as the model of gas flow
through a porous medium, non-linear heat transfer, ground water flow and population
dynamics (cf. Vázquez [50]). The porous medium equation is one of the non-linear
degenerate parabolic equations, namely the diffusion coefficient αuα−1 may vanish. On
the point that the diffusion coefficient vanishes, the porous medium equation behaves like
the hyperbolic equation. Meanwhile, on the point that the diffusion coefficient does not
vanish, the porous medium equation can be regarded as the parabolic equation. Therefore,
when we study the porous medium equation, we need to take into account both properties.

5



r

x

U (t, x)

Figure 1.1. the Barenblatt solution (t: fixed, α = 3)

The solution of the porous medium equation is not necessarily smooth and the solution
is not generally differentiable in a classical sense. Therefore, we introduce the notion of
weak solutions of the porous medium equation in the sense of distribution.

Definition 1.1. For u0 ∈ L1(Rn) and for f, g ∈ L1(0,∞ ;L1(Rn)), we call u a weak
solution of (1.1) if there exists T > 0 such that

(1) u(t, x) ≥ 0 for almost all (t, x) ∈ [0, T )× Rn;
(2) u ∈ L∞(0, T ;L1(Rn) ∩ Lα(Rn)) with ∇uα ∈ L2((0, T )× Rn);
(3) u satisfies (2.1) in the sense of distribution: For all φ ∈ C1(0, T ;C1

0(Rn)), and
for almost all 0 < t < T ,∫

Rn

u(t)φ(t) dx−
∫ t

0

∫
Rn

u∂tφdτdx+

∫ t

0

∫
Rn

∇uα · ∇φdτdx

=

∫
Rn

u0φ(0) dx−
∫ t

0

∫
Rn

f · ∇φdτdx+
∫ t

0

∫
Rn

gφ dτdx.

The existence of the weak solution is firstly shown by Olĕınik-Kalašinkov-Čžou [43].

J. L. Lions [31] also showed by using the Galerkin method (see also Ôtani [44]).
From the properties of the parabolic equations, one may expect that the weak solution

has certain weaker regularity. On the other hand, since the equation is degenerate, the
weak solution is not smooth in general. In fact, if f, g ≡ 0, the following Barenblatt
solution is one of the explicit weak solution of (1.1):

(1.2) U (t, x) =
1

(1 + σt)
n
σ

(
A− α− 1

2α

|x|2

(1 + σt)
2
σ

) 1
α−1

+

,

where σ = n(α − 1) + 2, (h(t, x))+ := max{h(t, x), 0} and A > 0 is a constant. In view
of (1.2), the solution to (1.1) generally fails the smooth regularity, while one may expect
the weak solution have weak regularity such as Hölder continuity. Indeed, the Barenblatt
solution (1.2) is Hölder continuous in t and x. Thus we are interested in the Hölder
regularity of the weak solution of (1.1) with presence of f and g.

Caffarelli-Friedman [11] and Caffarelli-Vázquez-Wolanski [10] showed the Hölder con-
tinuity of the weak solution of (1.1) under the assumption f, g ≡ 0. They essentially
used the Aronson-Benilan type pointwise estimate [2] and the comparison principle for
the weak solution. The Aronson-Benilan estimate is not generally known for the solu-
tions of the porous medium equation with external forces. Furthermore, if the equation
is vector valued or involves non-local effect such as the system with other equations, the
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comparison principle does not generally hold. Therefore, it is worth to derive the Hölder
regularity of the weak solution of (1.1) without using the comparison principle.

DiBenedetto-Friedman [19, 20] and Wiegner [51] showed Hölder continuity for the
gradient of the weak solution of the p-Laplace evolution equation:

(1.3)

{
∂tv − div(|∇v|p−2∇v) = 0, t > 0 , x ∈ Rn,

v(0, x) = v0(x), x ∈ Rn,

where p > 2. Their method does not rely on the comparison principle. If we let u := |∇v|,
then u solves

∂tu− div(up−2∇u) = F (∇v,D2v,D3v)

for some function F and their method may be applicable to obtain the Hölder continuity
of the weak solution of the porous medium equation. In fact, DiBenedetto-Friedman
mentioned the Hölder continuity of the weak solution of (1.1) with the external force
f ∈ Lq

(
0,∞ ;Lp(Rn)

)
and g ∈ L

q
2

(
0,∞ ;L

p
2 (Rn)

)
satisfying 2

q
+ n

p
< 1. Our main result

is to give the explicit proof of the Hölder estimate of the weak solutions, especially, we
show the explicit representation of the Hölder continuity of the weak solution on external
forces.

To specify the class of external forces, we introduce weak Lp spaces.

Definition 1.2. For a domain Ω ⊂ Rn and an exponent p > 1, a function f ∈ L1
loc(Ω)

belongs to Lp
w(Ω) if

∥f∥Lp
w(Ω) := sup

k⊂Ω : compact

1

|K|1−
1
p

∫
K

|f | dx <∞.

Our main theorem is the following:

Theorem 1.3. Let α > 1 and let u be a bounded weak solution of (1.1). Assume

f ∈ Lq
(
0,∞ ;Lp

w(Rn)
)
and g ∈ L

q
2

(
0,∞ ;L

p
2
w(Rn)

)
for some p, q > 2 satisfying 2

q
+ n

p
< 1.

Then, for all ε > 0, the weak solution u is uniformly Hölder continuous on (ε,∞) × Rn

and there exist constants C, γ > 0 such that for all (t, x), (s, y) ∈ (ε,∞)× Rn, we have

|u(t, x)− u(s, y)| ≤ C(|t− s|
γ
2 + |x− y|γ),

where γ > 0 is depending only on n, α, p, q and C > 0 is depending only on n, α, p, q, ε, f, g
and sup(0,∞)×Rn u.

We remark that the explicit dependence of the constant C in Theorem 1.3 may be
obtained in terms of f , g and sup(0,∞)×Rn u (cf. Theorem 2.4). We further remark

that the pressure function uα−1 may be Lipschitz continuous (cf. Caffarelli-Vázquez-
Wolanski [10]).

The proof of Theorem 1.3 is based on the intrinsic scaling argument and the alternative
method by DiBenedetto-Friedman [20]. They introduced the modified parabolic cylinders
whose dimensions are intrinsically scaled to reflect the degeneracy in (1.1). Since they use
the local oscillation of the solution as the intrinsic scaling, it seems difficult to obtain the
explicit Hölder estimate of the weak solution. We use the local maximum of the solution
as the intrinsic scaling and reconstruct the alternative selection argument. In the course
of the proof, the Caccioppoli estimate plays an important role. Including all the term of
external forces into the Caccioppoli estimate, we obtain much generalized condition on
the external force.
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1.2. Regularity and asymptotic behavior for the Keller-Segel system of
degenerate type with critical non-linearity. In Chapter 3, we consider the Cauchy
problem for the Keller-Segel system of degenerate type:

(1.4)


∂tu−∆uα + div(u∇ψ) = 0, t > 0 , x ∈ Rn,

−∆ψ + ψ = u, t > 0 , x ∈ Rn,

u(0, x) = u0(x) ≥ 0, x ∈ Rn,

where α > 1. Keller and Segel [27] gave a semi-linear parabolic system as the model of
chemotaxis. Considering that the diffusion of organisms is depending on the density and
taking the zero relaxation time limit, we obtain the degenerate Keller-Segel system (1.4).
Since ψ = (−∆ + 1)−1u is given by the Bessel potential of u, the Keller-Segel system
(1.4) can be reduced to a single non-linear degenerate parabolic equation with a non-local
term. As the case of the porous medium equation, we define the weak solution of (1.4)
as in the sense of distribution since the regularity of solutions is not generally available.

Nagai and Mimura [38] firstly considered the degenerated model (1.4) as the model of

the population dynamics with n = 1 (see also Dı́az-Galiano-Jüngel [16, 17]). Ôtani [44]
showed the existence of the local solution of (1.4). Sugiyama [46] and Sugiyama-Kunii [48]
studied the existence or non-existence of the global solution of the Keller-Segel system
(1.4). They showed that if α ≤ 2− 2

n
and the initial data u0 is sufficiently small in some

sense, then there exists a global decaying solution. Since the solution goes to zero, we may
regard the non-linear term div(u∇ψ) in (1.4) as a small perturbation and the solution of
(1.4) asymptotically converges to the Barenblatt solution of the porous medium equation
without external forces. In fact, Luckhaus-Sugiyama [32] showed the asymptotic profile
of the solution in Lp spaces when 1 < α ≤ 2 − 2

n
, n ≥ 3 and 1 ≤ p ≤ ∞. Ogawa [40]

showed that if 1 < α < 2 − 2
n
, then the algebraic convergence rate is obtained for the

remainder term in L1 space. He used the forward self-similar transform and the Hölder
continuity of the rescaled solution. For the critical case α = 2 − 2

n
, since the uniform

Hölder regularity of the rescaled solution was not clear, we did not show the explicit
convergence rate for the remainder term. Using the uniform Hölder estimate in Chapter
2, we obtain the algebraic convergence rate of the remainder term of the solution for the
case of critical non-linearity as t→ ∞.

Theorem 1.4. Let α = 2 − 2
n

and n ≥ 3. Assume that u0 ∈ L1(Rn) ∩ Lα(Rn)
sufficiently small in some sense and |x|au0 ∈ L1(Rn) for some a > n. Then, there exist
C > 0 and ν > 0 such that the corresponding global weak solution u of (1.4) satisfies

∥u(t)− U (t)∥L1(Rn) ≤ C(1 + σt)−ν , t > 0,

where σ = n(α− 1) + 2 and

U (t, x) = (1 + σt)−
n
σ

(
A− α− 1

2α

|x|2

(1 + σt)
2
σ

) 1
α−1

+

is the Barenblatt solution with the constant A > 0 satisfying ∥U ∥1 = ∥u0∥1.

To prove Theorem 1.4, we show the decay estimate of the entropy functional of the
rescaled solution. We follow the basic strategy to derive the uniform convergence rate by
the method due to Carrillo-Toscani [15]. The key idea is to derive the decay estimate
of the entropy functional and use the relative entropy estimate. To this end, we need to
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differentiate the entropy functional with respect to the time variable t. Since the equation
(1.4) is degenerate, the rescaled solution is not generally differentiable. To overcome this
difficulties, we use the uniform Hölder continuity of the rescaled solution and apply it to
obtain the decay rate of the entropy functional.

By the explicit decay rate of the remainder term, we obtain the optimal decay rate
of the solution of (1.4). Indeed, we find that the optimal decay rate of the solution is
the same decay rate as the decay rate of the Barenblatt solution of the porous medium
equation.

1.3. Hölder continuity for solutions of the p-harmonic heat flow. In Chapter
4, we consider the following p-harmonic heat flow equation:

(1.5)

{
∂tu− div(|∇u|p−2∇u) = div f, t > 0, x ∈ Rn,

u(0, x) = u0(x), x ∈ Rn,

where p > 2 is a constant, u : (0,∞)×Rn → R is unknown function, f : (0,∞)×Rn → Rn

and u0 : Rn → R are given external and initial data.
It is well-known that the p-harmonic operator − div(|∇u|p−2∇u) is derived by the

Euler-Lagrange equation of a p-energy functional ∥∇u∥pLp . The evolution equation (1.5)
is described as the gradient flow of the p-energy functional with the lower order term.

We are interested in how the regularity of f is reflected in the regularity of solutions.
For the case p = 2, the Hölder and more higher regularity for the solution of (1.5) is
well-known (cf. Giaquinta [23] and the references there in). For the case p > 2 and
f ≡ 0, the Hölder continuity of the gradient of solutions was established by DiBenedetto-
Friedman [19, 20] and Wiegner [51]. Misawa [33] showed the gradient Hölder estimate
of the solution of (1.5) with the external force f . He assumed the Hölder continuity of the
external force with respect to t and x. We generalize his results and give more suitable
condition of the external force for the Hölder continuity of the gradient of solutions.

Theorem 1.5. Let u be a weak solution of (1.5) satisfying ∇u ∈ L∞((0,∞) × Rn).
Assume that for some constant K > 0 and γ0 > n+2− p

p−1
, the external force f satisfies

(1.6)

∫ t0

t0−R2

∫
{x∈Rn:|x−x0|<R}

|∇f |
p

p−1 dxdt ≤ KRγ0

for all (t0, x0) ∈ (0,∞)×Rn and 0 < R < 1 satisfying (t0 −R2, t0)×{x ∈ Rn : |x− x0| <
R} ⊂ (0,∞)× Rn. Then ∇u is Hölder continuous, namely for all ε > 0,

|∇u(t, x)−∇u(s, y)| ≤ C(|t− s|
γ
2 + |x− y|γ)

for (t, x), (s, y) ∈ (ε,∞)× Rn, where the constant γ > 0 depends only on n, p, γ0 and the
constant C > 0 depends only on n, p, γ0, ε.

To prove Theorem 1.5, we consider the time dependent mean oscillation of f and we
show the decay estimate of the mean oscillation of ∇u using the perturbation argument.
It is well-known that we need to show the decay estimate of the mean oscillation of ∇u
to obtain the Hölder continuity (cf. Campanato [14]). By the Morrey type regularity of
∇f , we obtain the decay estimate of the mean oscillation of ∇u. If the external force f is
Hölder continuous with respect to t and x, then we have the Morrey type regularity (1.6)
of ∇f . Hence our results cover the results of Misawa [33].
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In Appendix A, we consider some semi-linear parabolic equation related to the mean
curvature flow. We study the Harnack inequality of non-negative solutions for the Cauchy
problem of the semi-linear parabolic equation. Particularly, we give the explicit depen-
dence of the Harnack inequality on the coefficient of the semi-linear parabolic equation.

2. Notation

In this thesis, we use the following notation. We denote a set of nonnegative integer
by N0. For ρ, θ0 > 0 and t0 ∈ R, we write open intervals Iρ(t0) = (t0 − ρ2, t0) and
Iθ0ρ (t0) = (t0 − θ0

2
ρ2, t0). For ρ > 0 and x0 ∈ Rn, we denote the n-dimensional open

ball with radius ρ and center x0 by Bρ(x0). We also denote the open cube with length
ρ and center x0 = (x0,i)i by Kρ(x0) = {y = (yi)i ∈ Rn : max1≤i≤n |x0,i − yi| < ρ}.
We define parabolic cylinders Qρ(t0, x0), Q

θ0
ρ (t0, x0) by Qρ(t0, x0) = Iρ(t0) × Bρ(x0) and

Qθ0
ρ (t0, x0) = Iθ0ρ (t0) × Bρ(x0). For a parabolic cylinder Qρ(t0, x0), we define a parabolic

boundary ∂pQρ(t0, x0) by

∂pQρ(t0, x0) :=
(
{t0 − ρ2} ×Bρ(x0)

)
∪
(
Iρ(t0)× ∂Bρ(x0)

)
.

For (t, x), (s, y) ∈ R× Rn, we write a parabolic distance distp
(
(t, x), (s, y)

)
by

distp
(
(t, x), (s, y)

)
:= max

{
|t− s|

1
2 , |x− y|

}
.

For A,B ⊂ R× Rn, we write a parabolic distance distp(A,B) by

distp(A,B) := inf
z∈A,z′∈B

distp(z, z
′).

We denote the set of infinitely differentiable functions with compact support in Ω by
C∞

0 (Ω). We denote the space of p-th integrable functions in Ω by Lp(Ω). We denote the
norm of Lp(Ω) by ∥f∥Lp(Ω) and if there is no confusion, we write ∥f∥p = ∥f∥Lp(Ω) for
short. For k ∈ N and 1 ≤ p ≤ ∞, we write the Sobolev space by

W k,p(Ω) :=
{
u ∈ Lp(Ω) : ∥u∥Wk,p(Ω) :=

∑
|α|≤k

∥Dαu∥Lp(Ω) <∞
}
.

As the Sobolev space W k,2(Ω) is the Hilbert space, we denote W k,2(Ω) by Hk(Ω). The
completion C∞

0 (Ω) in H1(Ω) is denoted by H1
0 (Ω). We define the weak Lp spaces Lp

w(Ω)
by

Lp
w(Ω) :=

{
f ∈ L1

loc(Ω) : ∥f∥Lp
w(Ω) := sup

k⊂Ω : compact

1

|K|1−
1
p

∫
K

|f | dx <∞

}
.

For a ∈ R, we define the weighted Lp space Lp
a(Ω) by

Lp
a(Ω) := {f ∈ L1

loc(Ω) : |x|af ∈ Lp(Ω)}.

For a Banach space X and time interval I ⊂ R, we denote the set of X-valued p-th
powered integrable functions in I by Lp(I ;X) and the set of X-valued essentially bounded
maps in I by L∞(I ;X), endowed with a norm

∥u∥Lp(I ;X) :=

(∫
I

∥u(t)∥pX dt
) 1

p

, ∥u∥L∞(I ;X) := ess. sup
t∈I

∥u(t)∥X .
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A Banach-valued function space Lq(Iρ,M ;Lp
w(Bρ)) is abbreviated to Lq(Lp

w)(Qρ,M) and
another function spaces are also same. For a set A, we denote the characteristic function
by χA, namely

χA(x) :=

{
1, x ∈ A,

0, x /∈ A.

For a function f on a set A, we denote the oscillation of f in A by oscA f := supA f−infA f .
We denote the positive part of f and the negative part of f by f+ := max{0, f} and
f− := max{0,−f}, respectively. We remark that a superscript plus or minus is different
of the positive part or the negative part. For a constant k ∈ R and a function f on a set
Ω, we let

{f > k} := {x ∈ Ω : f(x) > k}
and other level sets such as {f < k} are defined in a similar manner. For a measurable
set A ⊂ Rn and an integrable function f on A, we denote an integral mean by

(f)A :=
1

|A|

∫
A

f dx.

We denote a constant depending on α, β, . . . by C(α, β, . . . ). The same letter C will be
used to denote different constants. We use subscript numbers if we distinguish between
the constants.
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CHAPTER 2

Hölder estimates for solutions of the porous medium equation
with external forces

1. The porous medium equation with external forces

We consider the following degenerate parabolic equation:

(2.1)

{
∂tu−∆uα = div f + g, t > 0 , x ∈ Rn,

u(0, x) = u0(x) ≥ 0, x ∈ Rn,

where α > 1 is a constant, u = u(t, x) : (0,∞)×Rn → R is unknown, u0 = u0(x) : Rn →
[0,∞), f = f(t, x) : (0,∞)×Rn → Rn and g = g(t, x) : (0,∞)×Rn → R are given data.
For f, g ≡ 0, the equation (2.1) is called the porous medium equation. The equation (2.1)
is a degenerate parabolic equation since the diffusion coefficient αuα−1 may vanish. It
is well-known that solutions of the degenerate parabolic equation (2.1) are not generally
smooth even if the initial data u0 is enough smooth. Thus we introduce the notion of
weak solutions.

Definition 2.1. For u0 ∈ L1(Rn) and for f, g ∈ L1(0,∞ ;L1(Rn)), we call u a weak
solution of (2.1) if there exists T > 0 such that

(1) u(t, x) ≥ 0 for almost all (t, x) ∈ [0, T )× Rn;
(2) u ∈ L∞(0, T ;L1(Rn) ∩ Lα(Rn)) with ∇uα ∈ L2((0, T )× Rn);
(3) u satisfies (2.1) in the sense of distribution, namely for all φ ∈ C1(0, T ;C1

0(Rn))
and for almost all 0 < t < T ,∫

Rn

u(t)φ(t) dx−
∫ t

0

∫
Rn

u∂tφdτdx+

∫ t

0

∫
Rn

∇uα · ∇φdτdx

=

∫
Rn

u0φ(0) dx−
∫ t

0

∫
Rn

f · ∇φdτdx+
∫ t

0

∫
Rn

gφ dτdx.

The existence of weak solutions of (2.1) is shown by Olĕınik-Kalašinkov-Čžou [43] and

J. L. Lions [31] (cf. Ôtani [44]). Our aim in this chapter is to obtain Hölder estimates for
weak solutions of (2.1).

Caffarelli-Friedman [11] and Caffarelli-Vázquez-Wolanski [10] showed Hölder continu-
ity for solutions of the porous medium equation (2.1). They essentially use a point-wise
estimate for the derivative of solutions given by Aronson-Benilan [2] and the comparison
principle for the porous medium equation. The Aronson-Benilan type estimate is not
known for the general case with the external force. In addition, if the equation involves
non-local effect such as the system with other equations, the comparison principle does
not generally hold. Therefore, it is worth to derive the regularity of the weak solution of
(2.1) without using the comparison principle.

This chapter is based on the paper [35].
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On the other hand, DiBenedetto-Friedman [20], Wiegner [51] considered the p-Laplace
evolution equation:

(2.2)

{
∂tv − div(|∇v|p−2∇v) = 0, t > 0 , x ∈ Rn,

v(0, x) = v0(x), x ∈ Rn.

The p-Laplace evolution equation is also the degenerate parabolic equation. They showed
the Hölder continuity for the gradient of solutions to (2.2) by using the alternative method
and the intrinsic scaling argument. Misawa [33] showed the gradient Hölder estimate for
more general p-Laplace evolution equations. We remark that their methods do not rely on
the comparison principle for the p-Laplace evolution equation (2.2). Roughly speaking,
the gradient of the solution can be regarded to satisfy (2.1) with f, g ≡ 0 and it seems
possible to apply their methods for solutions of the problem (2.1). In fact, DiBenedetto-
Friedman [20] showed Hölder continuity for solutions of (2.1) with f, g ≡ 0 and α > 1.
They mentioned the Hölder continuity of the weak solution of (2.1) involving the external
force f ∈ Lq

(
0,∞ ;Lp(Rn)

)
and g ∈ L

q
2

(
0,∞ ;L

p
2 (Rn)

)
with 2

q
+ n

p
< 1. In this chapter,

we extend their results and for more general external forces f, g, we show the Hölder
continuity for the solutions of (2.1). In addition, we obtain Hölder estimates of solutions.

Denoting the main theorem, we introduce weak Lp spaces.

Definition 2.2. For a domain Ω ⊂ Rn and an exponent p > 1, a function f ∈ L1
loc(Ω)

belongs to Lp
w(Ω) if

∥f∥Lp
w(Ω) := sup

k⊂Ω : compact

1

|K|1−
1
p

∫
K

|f | dx <∞.

Remark 2.3. By the Hölder inequality, we find Lp(Ω) ⊂ Lp
w(Ω). In fact, Lp

w(Ω) is

strictly larger than Lp(Ω) since |x|−
n
p /∈ Lp(Rn) but is belonging to Lp

w(Rn).

Now, we state our main theorem.

Theorem 2.4. Let α > 1 and let u be a bounded weak solution of (2.1). Assume that

f ∈ Lq(0,∞ ;Lp
w(Rn)) and g ∈ L

q
2 (0,∞ ;L

p
2
w(Rn)) for some p, q > 2 satisfying 2

q
+ n

p
< 1.

Then, for all ε > 0, the solution u is uniform Hölder continuous with respect to (t, x) in
(ε,∞)× Rn. Precisely, there exist constants C, γ > 0 such that

|u(t, x)− u(s, y)| ≤ C
(
∥u∥L∞((0,∞)×Rn)

+ ∥u∥
1
q
(1− 1

α
)

L∞((0,∞)×Rn)

∥∥f∥∥ 1
α

Lq(0,∞ ;Lp
w(Rn))

+ ∥u∥
2
q
(1− 1

α
)

L∞((0,∞)×Rn)∥g∥
1
α

L
q
2 (0,∞ ;L

p
2
w (Rn))

)
× (∥u∥

γ
2
(1− 1

α
)

L∞((0,∞)×Rn)|t− s|
γ
2 + |x− y|γ)

for all (t, x), (s, y) ∈ (ε,∞) × Rn, where γ > 0 depends only on n, α, p, q and C > 0
depends only on n, α, p, q, ε.

Remark 2.5. Our result is also valid for interior Hölder estimates for solutions. In-
deed, for f ∈ Lq

loc

(
0,∞ ;Lp

w,loc

)
and g ∈ L

q
2
loc

(
0,∞ ;L

p
2
w,loc

)
with 2

q
+ n

p
< 1, we obtain

interior Hölder continuity for solutions.

Remark 2.6. The pressure function uα−1 may be Lipschitz continuous (cf. Caffarelli-
Vázquez-Wolanski [10])
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Qρ,M

Figure 2.1. the usual parabolic cylinder and the modified parabolic cylinder

The basic strategy to prove Theorem 2.4 is to use the intrinsic scaling argument and
the alternative method by DiBenedetto-Friedman [20]. Since they use the local oscillation
of the solution as the intrinsic scaling, it seems difficult to obtain the Hölder estimate of the
solution. On the other hand, we use the local maximum of the solution as the intrinsic
scaling and we make the more exact Caccioppoli estimate. The Caccioppoli estimate
plays the important role to show the alternative method. Reconstructing the iteration
argument, we obtain the Hölder estimate of the solution.

For an application, we may consider the external force as the perturbation of the
solution (cf. [41]). Applying our theorem, we do not need Lp integrability of the external
force, but growth order of L2 integral. Therefore, it is useful to study L2 theory of non-
linear degenerate parabolic equations. Furthermore, we can exactly estimate the Hölder
norm of the solution by the external force and the maximum of the solution.

The chapter is organized as follows. In section 2, we firstly give an alternative lemma
and we show Theorem 2.4 using the alternative lemma. The alternative lemma gives
either the better lower bounds or the better upper bounds of the solution. We show the
lower bounds of the solution in section 3 and the upper bounds of the solution in section
4.

At the end of this section, we introduce some notations in this chapter. For ρ,M, θ0 > 0
and t0 ∈ R, we define open intervals Iρ,M(t0) and I

θ0
ρ,M(t0) by

Iρ,M(t0) :=
(
t0 −

ρ2

M1− 1
α

, t0

)
, Iθ0ρ,M(t0) :=

(
t0 −

θ0
2

ρ2

M1− 1
α

, t0

)
.

For x0 ∈ Rn, we define modified parabolic cylinders Qρ,M(t0, x0) and Q
θ0
ρ,M(t0, x0) by

Qρ,M(t0, x0) := Iρ,M(t0)×Bρ(x0), Qθ0
ρ,M(t0, x0) := Iθ0ρ,M(t0)×Bρ(x0).

We often abbreviate the center of parabolic cylinders (t0, x0). We put γ0 = 1− 2
q
− n

p
and

h(ρ,M, ω) :=
∥∥f∥∥2

Lq(Lp
w)(Qρ,M )

+ ω∥g∥
L

q
2 (L

p
2
w )(Qρ,M )

. For a function f on a set A, we denote

the oscillation of f in A by oscA f := supA f − infA f . For a set A ⊂ Rn, we denote the
n-dimensional Lebesgue measure by |A|. For an open interval (a, b) ⊂ R and an open ball
Bρ(x0) ⊂ Rn, we call η = η(t, x) a cut-off function in Q = (a, b) × Bρ(x0) if η ∈ C∞(Q)
satisfies

η(t, x) ≡ 0 a ≤ t ≤ b, x ∈ ∂Bρ(x0) and η(a, x) ≡ 0 x ∈ Bρ(x0).
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2. Alternative lemma and proof of the main theorem

We hereafter replace uα by u and we consider the following equation:

(2.3) ∂tu
1
α −∆u = − div f + g.

Let M and ω be an approximated supremum and oscillation of the weak solution u,
namely

(2.4) sup
Qρ,M (t0,x0)

u ≤M ≤ 3 sup
Qρ,M (t0,x0)

u,

and

(2.5)
3

4
ω ≤ osc

Qρ,M (t0,x0)
u ≤ ω.

Lemma 2.7 (alternative lemma). Let us assume (2.4) and (2.5). Then there ex-
ist constants 0 < θ0, η0 < 1 and δ0 > 0 depending only on n, α, p, q such that for all

ρ > 0 satisfying ργ0 ≤ δ0ωM
− 1

q
(1− 1

α
)h(ρ,M, ω)−

1
2 , where h(ρ,M, ω) :=

∥∥f∥∥2
Lq(Lp

w)(Qρ,M )
+

ω∥g∥
L

q
2 (L

p
2
w )(Qρ,M )

, we obtain the following estimates:

i) (the lower bounds) Either if∣∣∣∣Qρ,M(t0, x0) ∩
{
u < inf

Qρ,M (t0,x0)
u+

ω

2

}∣∣∣∣ ≤ θ0|Qρ,M(t0, x0)|,

where
∣∣∣Qρ,M(t0, x0) ∩

{
u < infQρ,M (t0,x0) u + ω

2

}∣∣∣ denotes the Lebesgue measure on

Rn+1, then we have

u(t, x) ≥ inf
Qρ,M (t0,x0)

u+ η0ω for (t, x) ∈ Q ρ
2
,M(t0, x0);

ii) (the upper bounds) otherwise, if∣∣∣∣Qρ,M(t0, x0) ∩
{
u < inf

Qρ,M (t0,x0)
u+

ω

2

}∣∣∣∣ > θ0|Qρ,M(t0, x0)|,

then we have

u(t, x) ≤ sup
Qρ,M (t0,x0)

u− η0ω for (t, x) ∈ Qθ0
ρ
2
,M
(t0, x0).

According to Lemma 2.7, we obtain

osc
Q

θ0
ρ
2 ,M

(t0,x0)

u ≤ osc
Qρ,M (t0,x0)

u− η0ω ≤ (1− η0)ω

provided ργ0 ≤ δ0ωM
− 1

q
(1− 1

α
)h(ρ,M, ω)−

1
2 . We remark that we may take η0 ≤ 1

4
.

Remark 2.8. We explain an advantage to use the modified parabolic cylinder. For
ρ≪ 1 and M > 0, we consider

∂tu
1
α −∆u = − div f + g in Qρ,M .
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Introducing the scale transform

t =
ρ2

M1− 1
α

s, x = ρy,

uρ,M(s, y) =
1

M
u(t, x), fρ,M(s, y) = f(t, x), gρ,M(s, y) = g(t, x),

we obtain

∂su
1
α
ρ,M −∆yuρ,M = − div

( ρ
M
fρ,M

)
+
ρ2

M
gρ,M in Q1.

Considering M ∼= supQρ,M (t0,x0) u, which is corresponding to the assumption (2.4), we can
regard the smoothing effect of the equation as uniformly. Furthermore, in view of∥∥∥∥ ρM fρ,M

∥∥∥∥
Lq(Lp

w)(Q1)

= ρ1−
2
q
−n

pM−1+ 1
q
(1− 1

α
)
∥∥f∥∥

Lq(Lp
w)(Qρ,M (t0,x0))

,∥∥∥∥ ρ2Mgρ,M

∥∥∥∥
L

q
2 (L

p
2
w )(Q1)

= ρ2(1−
2
q
−n

p
)M−1+ 2

q
(1− 1

α
)∥g∥

L
q
2 (L

p
2
w )(Qρ,M (t0,x0))

,

the inequality 1− 2
q
− n

p
> 0 is the sufficient condition to ignore the external force.

Proof of Theorem 2.4. We show Theorem 2.4 by temporary admitting the alter-
native lemma, Lemma 2.7. We put Q = (0,∞)× Rn, M0 = supQ u and ω0 = M0. Let
θ0, δ0 and η0 be as in Lemma 2.7. We choose 0 < ρ0 < ε satisfying

ργ00 ≤ δ0ω0M
− 1

q
(1− 1

α
)

0

(∥∥f∥∥2
Lq(0,∞ ;Lp

w(Rn))
+ ω0∥g∥

L
q
2 (0,∞ ;L

p
2
w (Rn))

)− 1
2
.

For (t0, x0) ∈ (0,∞)×Rn, we denote Q0 = Qρ0,M0(t0, x0) , µ
+
0 = supQ0

u and µ−
0 = infQ0 u.

Then, we find 
osc
Q0

u ≤ ω0,

sup
Q0

u ≤ sup
Q
u ≤M0,

ργ00 ≤ δ0ω0M
− 1

q
(1− 1

α
)

0 h(ρ0,M0, ω0)
− 1

2 ,

where h(ρ0,M0, ω0) =
∥∥f∥∥2

Lq(Lp
w)(Q0)

+ ω0∥g∥
L

q
2 (L

p
2
w )(Q0)

. We choose

r0 := min

{
(1− η0)

1
γ0 ,

1

2

(1
3

) 1
2
(1− 1

α
)(θ0

2

) 1
2

}
and choose sequences as follows: For j ∈ N,

(2.6)

ωj := (1− η0)ωj−1, ρj := r0ρj−1,

Mj := max{µ+
j−1, ωj}, Qj := Qρj ,Mj

(t0, x0),

µ+
j := sup

Qj

u, µ−
j := inf

Qj

u.
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Lemma 2.9. Let {ωj, ρj,Mj, Qj}∞j=1 is defined the above (2.6). Then for 0 < δ0 < 1
defined in Lemma 2.7 and for j ∈ N, we obtain

(2.7)


osc
Qj

u ≤ ωj,

sup
Qj

u ≤ sup
Qj−1

u ≤Mj,

ργ0j ≤ δ0ωjM
− 1

q
(1− 1

α
)

j h(ρj,Mj, ωj)
− 1

2 .

Proof of Lemma 2.9. By the definition of Mj, we obtain supQj
u ≤ Mj. Since

r0 ≤ (1 − η0)
1
γ0 and ωj = (1 − η0)ωj−1, we find ργ0j ≤ δ0ωjM

− 1
q
(1− 1

α
)

j h(ρj,Mj, ωj)
− 1

2 . We
show oscQj

u ≤ ωj.
To show oscQj

u ≤ ωj, we make induction. We firstly consider the case j = 1. Either

if oscQ0 u ≤ 3
4
ω0, then we find Q1 ⊂ Q0 since r0 ≤ (3

4
)
1
2
(1− 1

α
) and

M1

M0

≥ ω1

M0

= (1− η0) ≥
3

4
.

For this reason, we obtain

osc
Q1

u ≤ osc
Q0

u ≤ 3

4
ω0 ≤ (1− η0)ω0 = ω1.

Otherwise, if 3
4
ω0 ≤ oscQ0 u, we obtain M0 = ω0 ≤ 4

3
µ+
0 . Applying Lemma 2.7, we find

osc
Q

θ0
ρ0
2 ,M0

(t0,x0)

u ≤ (1− η0)ω0.

Since r0 ≤ 1
2

(
1
3

) 1
2
(1− 1

α
)(

θ0
2

) 1
2
, we have Q1 ⊂ Qθ0

ρ0
2
,M0

(t0, x0) ⊂ Q0 and hence

osc
Q1

u ≤ osc
Q

θ0
ρ0
2 ,M0

(t0,x0)

u ≤ (1− η0)ω0 = ω1.

In either case, we obtain (2.7) for j = 1. Next, we assume (2.7) for j ≤ k and we show
for j = k + 1. First, we give the following inequality:

(2.8) µ+
k−1 ≤ max

{
3

2(1− η0)
ωk , 3µ

+
k

}
.

To show (2.8), we consider the case µ−
k−1 ≤ 1

3
µ+
k−1 first. Then

µ+
k−1 ≤ osc

Qk−1

u+ µ−
k−1 ≤ ωk−1 +

1

3
µ+
k−1

and hence µ+
k−1 ≤ 3

2
ωk−1 = 3

2(1−η0)
ωk. For the other case µ−

k−1 >
1
3
µ+
k−1, we have µ+

k−1 <

3µ−
k−1 ≤ 3µ−

k ≤ 3µ+
k and we obtain (2.8).

We show (2.7) for j = k + 1. First, we consider the case oscQk
u ≤ 3

4
ωk and we show

Qk+1 ⊂ Qk. Either if Mk = ωk, then

Mk+1

Mk

=
Mk+1

ωk

≥ (1− η0)ωk

ωk

= (1− η0) ≥
3

4
.

18



Since r0 ≤ (3
4
)
1
2
(1− 1

α
), we obtain Qk+1 ⊂ Qk. Otherwise, if Mk = µ+

k−1, we obtain by (2.8),

Mk+1

Mk

=
Mk+1

µ+
k−1

≥ Mk+1

max
{

3
2(1−η0)

ωk , 3µ
+
k

}
≥ 1

max
{

3
2(1−η0)

ωk

Mk+1
,

3µ+
k

Mk+1

}
≥ 1

max
{

3
2(1−η0)2

, 3
} ≥ 1

3
.

Since r0 ≤ (1
3
)
1
2
(1− 1

α
), we have Qk+1 ⊂ Qk. In either case, we have Qk+1 ⊂ Qk and hence

osc
Qk+1

u ≤ osc
Qk

u ≤ 3

4
ωk ≤ ωk+1.

Second, we consider the case 3
4
ωk ≤ oscQk

u ≤ ωk. Since ωk ≤ 4
3
µ+
k , we obtain

µ+
k−1 ≤ max

{
3

2(1− η0)
ωk , 3µ

+
k

}
≤ max

{
2

(1− η0)
µ+
k , 3µ

+
k

}
≤ 3µ+

k

and hence

Mk ≤ max

{
4

3
µ+
k , 3µ

+
k

}
≤ 3µ+

k .

Hence we apply Lemma 2.7 and we obtain

osc
Q

θ0
ρk
2 ,Mk

(t0,x0)

u ≤ (1− η0)ωk = ωk+1.

Since r0 ≤ 1
2

(
1
3

) 1
2
(1− 1

α
) ( θ0

2

) 1
2 and Mk+1

Mk
≥ µ+

k

3µ+
k

= 1
3
, we have Qk+1 ⊂ Qθ0

ρk
2
,Mk

(t0, x0) and

hence

osc
Qk+1

u ≤ osc
Q

θ0
ρk
2 ,Mk

(t0,x0)

u ≤ ωk+1.

□

Remarking that Mj ≥Mj+1 for j ∈ N, we have

osc
Qρj,M0

(t0,x0)
u ≤ osc

Qj

u ≤ ωj.

We choose 0 < γ < 1 satisfying rγ0 ≥ 1− η0. Then, we obtain

osc
Qρj,M0

(t0,x0)
u ≤ (1− η0)

jω0 = ω0

(
ρj
ρ0

)γ

.

For ρ ≤ ρ0, there exists k ∈ N such that ρk ≤ ρ ≤ ρk−1 and hence

osc
Qρ,M0

(t0,x0)
u ≤ ω0

(
ρk−1

ρ0

)γ

= ω0r
−γ
0

(
ρk
ρ0

)γ

≤M0r
−γ
0

(
ρ

ρ0

)γ

.
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Taking ρ0 > 0 as ργ00 = δ0ω0M
− 1

q
(1− 1

α
)

0

(∥∥f∥∥2
Lq(0,∞ ;Lp

w(Rn))
+ ω0∥g∥

L
q
2 (0,∞ ;L

p
2
w (Rn))

)− 1
2
, we

find

osc
Qρ,M0

(t0,x0)
u ≤ CM

1− γ
γ0

0 M
γ

qγ0
(1− 1

α
)

0

(∥∥f∥∥2
Lq(0,∞ ;Lp

w(Rn))
+ ω0∥g∥

L
q
2 (0,∞ ;L

p
2
w (Rn))

) γ
2γ0 ργ

for ρ ≤ ρ0 where the constant C depends only on n, α, p and q. Furthermore, if ρ > ρ0,
then

osc
Qρ,M0

(t0,x0)
u ≤M0 ≤M0

(
ρ

ρ0

)γ

≤ CM
1− γ

γ0
0 M

γ
qγ0

(1− 1
α
)

0

(∥∥f∥∥2
Lq(0,∞ ;Lp

w(Rn))
+ ω0∥g∥

L
q
2 (0,∞ ;L

p
2
w (Rn))

) γ
2γ0 ργ.

Therefore, we find

osc
Qρ,M0

(t0,x0)
u ≤ C

(
M0 +M

1
q
(1− 1

α
)

0

(∥∥f∥∥2
Lq(0,∞ ;Lp

w(Rn))
+M0∥g∥

L
q
2 (0,∞ ;L

p
2
w (Rn))

) 1
2

)
ργ

≤ C
(
M0 +M

1
q
(1− 1

α
)

0

∥∥f∥∥
Lq(0,∞ ;Lp

w(Rn))
+M

2
q
(1− 1

α
)

0 ∥g∥
L

q
2 (0,∞ ;L

p
2
w (Rn))

)
ργ

and proof of Theorem 2.4 is complete. □

3. Proof of the lower bounds

Without loss of generality, we assume t0 = 0 by using the parallel translation. And
we omit the center of ball x0. We hereafter write µ+ = supQρ,M

u, µ− = infQρ,M
u.

In this section, we show the lower bounds in Lemma 2.7. More precisely, we show the
following proposition:

Proposition 2.10. Let ρ > 0 satisfying ργ0 ≤ ωM− 1
q
(1− 1

α
)h(ρ,M, ω)−

1
2 . Assume the

inequality (2.4) and (2.5). Then there exists 0 < θ0 < 1 depending only on n, α, p, q such
that if ∣∣∣∣Qρ,M ∩

{
u < µ− +

ω

2

}∣∣∣∣ ≤ θ0|Qρ,M |,

where
∣∣∣Qρ,M ∩

{
u < µ− + ω

2

}∣∣∣ denotes the Lebesgue measure on Rn+1, then we have

u(t, x) ≥ µ− +
ω

4
for (t, x) ∈ Q ρ

2
,M .

To show the lower bounds, the following Caccioppoli estimate plays the important
role.

Lemma 2.11 (the Caccioppoli estimate for sub-level sets). Let η = η(t, x) be a cut-off
function in Qρ,M . For µ− < k < µ− + 1

2
ω, there exists a constant C > 0 depending only

20



on α such that

(2.9) sup
t∈Iρ,M

∫
Bρ

(u(t)− k)2−η
2(t) dx+ (µ+)1−

1
α

∫∫
Qρ,M

|∇(u− k)−|2η2 dtdx

≤ C

{
ω

∫∫
Qρ,M

(u− k)−η∂tη dtdx+ (µ+)1−
1
α

∫∫
Qρ,M

(u− k)2−|∇η|2 dtdx

+ (µ+)1−
1
αh(ρ,M, ω)

(∫
Iρ,M

|Bρ ∩ {u(t) < k}|q
′( 1

2
− 1

p
) dt

) 2
q′
}
,

where 1
2
= 1

q
+ 1

q′
and |Bρ ∩ {u(t) < k}| denotes the Lebesgue measure on Rn.

Proof of Lemma 2.11. Testing the function −(u− k)−η
2 to the equation (2.3), we

obtain

1

α

∫∫
Qρ,M

∂t

(∫ (u−k)−

0

(k − ξ)
1
α
−1ξ dξ

)
η2 dtdx+

∫∫
Qρ,M

∇(u− k)− · ∇{(u− k)−η
2} dtdx

= −
∫∫

Qρ,M

f · ∇{(u− k)−η
2} dtdx−

∫∫
Qρ,M

g(u− k)−η
2 dtdx.

By the integration by parts, we have

1

α
sup

t∈Iρ,M

∫
Bρ

(∫ (u(t)−k)−

0

(k − ξ)
1
α
−1ξ dξ

)
η2(t) dx+

∫∫
Qρ,M

|∇(u− k)−|2η2 dtdx

≤ 1

α

∫∫
Qρ,M

(∫ (u−k)−

0

(k − ξ)
1
α
−1ξ dξ

)
∂tη

2 dtdx−
∫∫

Qρ,M

(∇(u− k)− · ∇η2)(u− k)− dtdx

−
∫∫

Qρ,M

f ·∇(u−k)−η
2 dtdx−

∫∫
Qρ,M

f ·∇η2(u−k)− dtdx−
∫∫

Qρ,M

g(u−k)−η
2 dtdx.

Using the Young inequality, we obtain

(2.10)
1

α
sup

t∈Iρ,M

∫
Bρ

(∫ (u(t)−k)−

0

(k − ξ)
1
α
−1ξ dξ

)
η2(t) dx+

1

4

∫∫
Qρ,M

|∇(u− k)−|2η2 dtdx

≤ 1

α

∫∫
Qρ,M

(∫ (u−k)−

0

(k − ξ)
1
α
−1ξ dξ

)
∂tη

2 dtdx+ 3

∫∫
Qρ,M

(u− k)2−|∇η|2 dtdx

+ 2

∫∫
Qρ,M∩{u<k}

|f |2η2 dtdx+
∫∫

Qρ,M∩{u<k}
|g|(u− k)−η

2 dtdx.

We estimate the first term of the left-hand side of (2.10). Since (2.5) and k ≤ µ− + ω
2
≤

µ+ − oscQρ,M
u+ ω

2
≤ µ+, we have

(k − ξ)
1
α
−1 ≥ k

1
α
−1 ≥ (µ+)

1
α
−1 for ξ ≥ 0
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and hence

1

2α
sup

t∈Iρ,M

∫
Bρ

(u(t)− k)2−η
2(t) dx+

1

4
(µ+)1−

1
α

∫∫
Qρ,M

|∇(u− k)−|2η2 dtdx

≤ 1

α
(µ+)1−

1
α

∫∫
Qρ,M

(∫ (u−k)−

0

(k − ξ)
1
α
−1ξ dξ

)
∂tη

2 dtdx

+ 3(µ+)1−
1
α

∫∫
Qρ,M

(u− k)2−|∇η|2 dtdx

++2(µ+)1−
1
α

∫∫
Qρ,M∩{u<k}

|f |2η2 dtdx

+ (µ+)1−
1
α

∫∫
Qρ,M∩{u<k}

|g|(u− k)−η
2 dtdx

=: I1 + I2 + I3 + I4.

(2.11)

We estimate I3 and I4. By the definition of the weak Lp space and by the Hölder inequality,
we have∫∫

Qρ,M∩{u<k}
|f |2η2 dtdx =

∫
Iρ,M

dt

∫
Bρ∩{u(t)<k}

|f |2 dx

≤
∫
Iρ,M

∥∥|f(t)|2∥∥
L

p
2
w (Bρ)

|Bρ ∩ {u(t) < k}|1−
2
p dt

≤
∥∥|f |2∥∥

L
q
2 (L

p
2
w )(Qρ,M )

(∫
Iρ,M

|Bρ ∩ {u(t) < k}|q
′( 1

2
− 1

p
) dt

) 2
q′

and∫∫
Qρ,M∩{u<k}

|g|(u− k)−η
2 dtdx =

ω

2

∫
Iρ,M

dt

∫
Bρ∩{u(t)<k}

|g| dx

≤ ω

2

∫
Iρ,M

∥g(t)∥
L

p
2
w (Bρ)

|Bρ ∩ {u(t) < k}|1−
2
p dt

≤ ω

2
∥g∥

L
q
2 (L

p
2
w )(Qρ,M )

(∫
Iρ,M

|Bρ ∩ {u(t) < k}|q
′( 1

2
− 1

p
) dt

) 2
q′

.

Therefore

(2.12) I3 + I4 ≤ 2(µ+)1−
1
αh(ρ,M, ω)

(∫
Iρ,M

|Bρ ∩ {u(t) < k}|q
′( 1

2
− 1

p
) dt

) 2
q′

.

Second, we estimate I1. Since∫ (u−k)−

0

(k − ξ)
1
α
−1ξ dξ ≤ −α(u− k)−

∫ (u−k)−

0

∂

∂ξ
(k − ξ)

1
α dξ

= α(u− k)−

[
k

1
α −

(
k − (u− k)−

) 1
α

]
,
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we have

I1 ≤ (µ+)1−
1
α

∫∫
Qρ,M

[k
1
α − (k − (u− k)−)

1
α ](u− k)−∂tη

2 dtdx

≤ (µ+)1−
1
α

∫∫
Qρ,M

[(
µ− +

ω

2

) 1
α

− (µ−)
1
α

]
(u− k)−∂tη

2 dtdx.

Either if µ− ≤ 1
2
µ+, then µ+ ≤ ω + µ− and hence µ+ ≤ 2ω. Therefore

(µ+)1−
1
α

[(
µ− +

ω

2

) 1
α

− (µ−)
1
α

]
≤ (2ω)1−

1
α

(
ω

2

) 1
α

≤ 21−
2
αω

and hence

I1 ≤ C(α)ω

∫∫
Qρ,M

(u− k)−∂tη
2 dtdx.

Otherwise, if µ− > 1
2
µ+, then(
µ− +

ω

2

) 1
α − (µ−)

1
α =

∫ 1

0

d

ds

(
µ− +

ω

2
s
) 1

α
ds

=
ω

2α

∫ 1

0

(
µ− +

ω

2
s
) 1

α
−1

ds

≤ ω

2α
(µ−)

1
α
−1 ≤ ω

2α

(
1

2
µ+

) 1
α
−1

and hence

(µ+)1−
1
α

[(
µ− +

ω

2

) 1
α

− (µ−)
1
α

]
≤ ω

2α
(µ+)1−

1
α

(
1

2
µ+

) 1
α
−1

≤ C(α)ω.

In either case, we obtain

(2.13) I1 ≤ C(α)ω

∫∫
Qρ,M

(u− k)−∂tη
2 dtdx.

Substituting (2.12) and (2.13) for (2.11) we obtain (2.9). □
Proof of Proposition 2.10. We consider the scale transform

s =M1− 1
α t, ũ(s, x) = u(t, x), η̃(s, x) = η(t, x), f̃(s, x) = f(t, x) and g̃(s, x) = g(t, x)

and we put h̃(ρ, ω) :=
∥∥f̃∥∥2

Lq(Lp
w)(Qρ)

+ω∥g̃∥
L

q
2 (L

p
2
w )(Qρ)

. We rewrite the Caccioppoli estimate

(2.9) as follows:

(2.14) sup
s∈Iρ

∫
Bρ

(ũ(s)− k)2−η̃
2(s) dx+

(µ+)1−
1
α

M1− 1
α

∫∫
Qρ

|∇(ũ− k)−|2η̃2 dsdx

≤ C(α)

{
ω

∫∫
Qρ

(ũ− k)−∂sη̃
2 dsdx+

(µ+)1−
1
α

M1− 1
α

∫∫
Qρ

(ũ− k)2−|∇η̃|2 dsdx

+
(µ+)1−

1
α

M1− 1
α

h̃(ρ, ω)

(∫
Iρ

|Bρ ∩ {ũ(s) < k}|q
′( 1

2
− 1

p
) ds

) 2
q′
}
.
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We take p∗, q∗ > 0 as

2

q′
=

2

q∗

(
1 +

2γ0
n

)
, q′

(
1

2
− 1

p

)
=
q∗
p∗
.

We remark that 2
q∗

+ n
p∗

= n
2
. For i ∈ N, we take ρ = ρi, k = ki, η̃ = η̃i satisfying η̃i ≡ 1

on Qρi+1
and

ki = µ− +
1

4
ω +

1

2i+1
ω, ρi =

1

2
ρ+

1

2i+1
ρ,

Yi :=
|Qρi ∩ {ũ < ki}|

|Qρ|
, Zi =

ρ2

|Qρ|

(∫
Iρi

|Bρi ∩ {ũ(s) < ki}|
q∗
p∗ ds

) 2
q∗
,

|∇η̃i| ≤
2

ρi − ρi+1

≤ 8 · 2i

ρ
, ∂sη̃i ≤

2

ρ2i − ρ2i+1

≤ 16 · 22i

3ρ2
.

Then, using (2.4) and (ũ− ki)− ≤ ω
2
, we rewrite (2.14) as

∥(ũ− ki)−η̃i∥2L∞(L2)∩L2(H1)(Qρi )

≤ C(α)

{
ω

∫∫
Qρi

(ũ− ki)−∂sη̃i
2 dsdx+

∫∫
Qρi

(ũ− ki)
2
−|∇η̃i|2 dsdx

+ h̃(ρ, ω)

(∫
Iρi

|Bρi ∩ {ũ(s) < ki}|
q∗
p∗ ds

) 2
q∗

(1+
2γ0
n

)
}

≤ C(α)

{
22iω2

ρ2
|Qρi ∩ {u < ki}|+ h̃(ρ, ω)

(∫
Iρi

|Bρi ∩ {ũ(s) < ki}|
q∗
p∗ ds

) 2
q∗

(1+
2γ0
n

)
}

≤ C(α)
ω2|Qρ|
ρ2

{
22iYi + h̃(ρ, ω)ω−2

(
|Qρ|
ρ2

) 2γ0
n

Z
1+

2γ0
n

i

}
.

Using the Ladyženskaja inequality (cf. Proposition B.2) and the Hölder inequality, we
have

∥(ũ− ki)−η̃i∥2L2(Qρi )
≤ ∥(ũ− ki)−η̃i∥2

L2+ 4
n (Qρi )

∥χ{ũ<ki}∥2Ln+2(Qρi )

≤ C(α, n)ω2|Qρ|Y
2

n+2

i

{
22iYi + h̃(ρ, ω)ω−2

(
|Qρ|
ρ2

) 2γ0
n

Z
1+

2γ0
n

i

}
and

∥(ũ− ki)−η̃i∥2Lq∗ (Lp∗ )(Qρi )
≤ C(α, n)

ω2|Qρ|
ρ2

{
22iYi + h̃(ρ, ω)ω−2

(
|Qρ|
ρ2

) 2γ0
n

Z
1+

2γ0
n

i

}
.

Since

∥(ũ− ki)−η̃i∥2L2(Qρi )
≥ ∥(ũ− ki)−∥2L2(Qρi+1∩{ũ<ki+1})

≥ (ki − ki+1)
2
−|Qρi+1

∩ {ũ < ki+1}| =
ω2

64 · 22i
|Qρ|Yi+1
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and

∥(ũ− ki)−η̃i∥2Lq∗ (Lp∗ )(Qρi )
≥ ∥(ũ− ki)−∥2Lq∗ (Lp∗ )(Qρi+1∩{ũ<ki+1})

≥ (ki − ki+1)
2
−

(∫
Iρi+1

|Bρi+1
∩ {ũ(s) < ki+1}|

q∗
p∗ ds

) 2
q∗

=
ω2

64 · 22i
|Qρ|
ρ2

Zi+1,

we obtain

Yi+1 ≤ C(α, n)

{
24iY

1+ 2
n+2

i + 22ih̃(ρ, ω)ω−2

(
|Qρ|
ρ2

) 2γ0
n

Y
2

n+2

i Z1+ε
i

}
and

Zi+1 ≤ C(α, n)

{
24iYi + 22ih̃(ρ, ω)ω−2

(
|Qρ|
ρ2

) 2γ0
n

Z1+ε
i

}
.

Either if q ≥ p, then q∗
p∗

≤ 1 and we obtain

Z0 =
ρ2

|Qρ|

(∫
Iρ0

|Bρ0 ∩ {ũ(s) < k0}|
q∗
p∗ ds

) 2
q∗

≤ ρ2

|Qρ|

(∫
Iρ0

|Bρ0 ∩ {ũ(s) < k0}| ds

) 2
p∗

ρ
4
q∗

(1− q∗
p∗

) ≤ C(n, p, q)Y
2
p∗
0 ,

by the Hölder inequality. Otherwise, if q < p, then

Z0 =
ρ2

|Qρ|

(∫
Iρ0

|Bρ0 ∩ {ũ(s) < k0}||Bρ0 ∩ {ũ(s) < k0}|1−
q∗
p∗ ds

) 2
q∗

≤ ρ2

|Qρ|
|Bρ0 |

2
p∗

− 2
q∗

(∫
Iρ0

|Bρ0 ∩ {ũ(s) < k0}| ds

) 2
q∗

≤ C(n, p, q)Y
2
q∗
0 .

Therefore, by using ργ0 ≤ ωh̃(ρ, ω)−
1
2 and Lemma B.13, there exists 0 < θ0 < 1 such that

if Y0 ≤ θ0, then Yi → 0 as i→ ∞, i.e.

ũ(s, x) > µ− +
ω

4
a.a. (s, x) ∈ Q ρ

2
.

□

4. Proof of the upper bounds

In this section, we show the upper bounds in Lemma 2.7. More precisely we show the
following proposition:

Proposition 2.12. Let 0 < θ0 < 1. Assume the inequality (2.4) and (2.5). Then,
there exist η1, δ1 > 0 depending only on n, α, p, q and θ0 such that if

ργ0 ≤ δ1ωM
− 1

q
(1− 1

α
)h(ρ,M, ω)−

1
2
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and ∣∣∣∣Qρ,M ∩
{
u < µ− +

ω

2

}∣∣∣∣ > θ0|Qρ,M |,

where
∣∣∣Qρ,M ∩

{
u < µ− + ω

2

}∣∣∣ and |Qρ,M | denote the Lebesgue measure on Rn+1, then we

have
u(t, x) ≤ sup

Qρ,M

u− η1ω for (t, x) ∈ Qθ0
ρ
2
,M
.

We choose θ0 as in Proposition 2.10 and δ1, η1 > 0 as in Proposition 2.12. Then taking

δ0 = min{1, δ1} , η0 = min
{1
4
, η1

}
,

we obtain Lemma 2.7.

Lemma 2.13. Let 0 < θ0 < 1. If

(2.15)

∣∣∣∣Qρ,M ∩
{
u < µ− +

ω

2

}∣∣∣∣ > θ0|Qρ,M |,

then for all 0 < θ < θ0, there exists − ρ2

M1− 1
α
< τ0 < −θ ρ2

M1− 1
α

depending only on θ and θ0
such that ∣∣∣∣Bρ ∩

{
u(τ0) > µ− +

ω

2

}∣∣∣∣ ≤ 1− θ0
1− θ

|Bρ|,

where |Bρ ∩
{
u(τ0) > µ− + ω

2

}
| and |Bρ| denote the Lebesgue measure on Rn.

Proof of Lemma 2.13. By the change of variable t = ρ2

M1− 1
α
s, ũ(s, x) = u(t, x) and

the inequality (2.15), we obtain∫ 0

−1

∣∣∣∣Bρ ∩
{
ũ(s) > µ− +

ω

2

}∣∣∣∣ ds = M1− 1
α

ρ2

∣∣∣∣Qρ,M ∩
{
u > µ− +

ω

2

}∣∣∣∣
≤ M1− 1

α

ρ2

(
|Qρ,M | −

∣∣∣∣Qρ,M ∩
{
u < µ− +

ω

2

}∣∣∣∣)
<
M1− 1

α

ρ2
(1− θ0)|Qρ,M | = (1− θ0)|Bρ|.

If |Bρ ∩ {u(s) > µ− + ω
2
}| > 1−θ0

1−θ
|Bρ| for all −1 < s < −θ, then∫ 0

−1

∣∣∣∣Bρ ∩
{
ũ(s) > µ− +

ω

2

}∣∣∣∣ ds ≥ ∫ θ0

−1

∣∣∣∣Bρ ∩
{
ũ(s) > µ− +

ω

2

}∣∣∣∣ ds
≥ (1− θ0)|Bρ|,

which is contradiction. □
Lemma 2.14. There exist r0, δ2 > 0 depending only on n, α, p, q and θ0 such that if

ργ0 ≤ δ2ωM
− 1

q
(1− 1

α
)h(ρ,M, ω)−

1
2 , then∣∣∣∣Bρ ∩

{
u(t) > µ+ − ω

2r0

}∣∣∣∣ ≤ (1− (θ02
)2)

|Bρ|

for t ∈ Iθ0ρ,M , where |Bρ∩
{
u(t) > µ+− ω

2r0

}
| and |Bρ| denote the Lebesgue measure on Rn.
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Proof of Lemma 2.14. We rewrite (2.3) as

∂tu− αu1−
1
α∆u = −αu1−

1
α div f + αu1−

1
α g.

Let

ψ(ξ) := log+

(
H

H − (ξ − k)+ + c

)
,

where k := µ−+ ω
2
,H := µ+−k = oscQρ,M

u− ω
2
, c := ω

2r0
and r0 > 2 be chosen later. We

remark that ψ, ψ′, ψ′′ = (ψ′)2 ≥ 0, where ′ = d
dξ
. We take the cut-off function η = η(x) as

η ∈ C∞
0 (Bρ), η ≡ 1 on B(1−σ0)ρ and |∇η| ≤ 2

σ0ρ
,

where σ0 > 0 be chosen later. Putting w = ψ(u) and taking the test function (ψ2)′(u)η2

in (τ0, t)×Bρ, where τ0 be chosen later, we have

1

2

∫
Bρ

w2η2 dx

∣∣∣∣t
τ0

+ α

∫ t

τ0

∫
Bρ

(
∇u · ∇

(
u1−

1
α (ψ2)′η2

))
dtdx

= α

∫ t

τ0

∫
Bρ

(
f · ∇

(
u1−

1
α (ψ2)′η2

))
dtdx+ α

∫ t

τ0

∫
Bρ

u1−
1
α g(ψ2)′η2 dtdx.

Since

∇
(
u1−

1
α (ψ2)′η2

)
=
(
1− 1

α

)
u−

1
α (ψ2)′η2∇u+ u1−

1
α (ψ2)′′η2∇u+ u1−

1
α (ψ2)′∇η2,

we obtain

1

2

∫
Bρ

w2η2 dx

∣∣∣∣t
τ0

+ (α− 1)

∫ t

τ0

∫
Bρ

u−
1
α (ψ2)′|∇u|2η2 dtdx

+ α

∫ t

τ0

∫
Bρ

u1−
1
α (ψ2)′′|∇u|2η2 dtdx

= −α
∫ t

τ0

∫
Bρ

u1−
1
α (ψ2)′(∇u · ∇η2) dtdx

+ (α− 1)

∫ t

τ0

∫
Bρ

u−
1
α (g2)′(f · ∇u)η2 dtdx

+ α

∫ t

τ0

∫
Bρ

u1−
1
α (ψ2)′′(f · ∇u)η2 dtdx

+ α

∫ t

τ0

∫
Bρ

u1−
1
α (ψ2)′(f · ∇η2) dtdx

+ α

∫ t

τ0

∫
Bρ

u1−
1
α (ψ2)′gη2 dtdx

=: I1 + I2 + I3 + I4 + I5.

(2.16)
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Using the property (ψ2)′∇u = 2w∇w and the Young inequality, we have

I1 ≤ α

∫ t

τ0

∫
Bρ

u1−
1
αw|∇w|2η2 dtdx+ 4α

∫ t

τ0

∫
Bρ

u1−
1
αw|∇η|2 dtdx,

I2 ≤
α− 1

2

∫ t

τ0

∫
Bρ

u−
1
α (ψ2)′|∇u|2η2 dtdx+ α− 1

2

∫ t

τ0

∫
Bρ

u−
1
α (ψ2)′|f |2η2 dtdx,

I3 ≤
α

4

∫ t

τ0

∫
Bρ

u1−
1
α (ψ2)′′|∇u|2η2 dtdx+ α

∫ t

τ0

∫
Bρ

u1−
1
α (ψ2)′′|f |2η2 dtdx,

I4 ≤ 4α

∫ t

τ0

∫
Bρ

u1−
1
αwψ′|f ||∇η|η dtdx

≤ 2α

∫ t

τ0

∫
Bρ

u1−
1
αw|∇η|2 dtdx+ 2α

∫ t

τ0

∫
Bρ

u1−
1
α (g′)2w|f |2η2 dtdx,

I5 ≤ 2α

∫ t

τ0

∫
Bρ

u1−
1
αwψ′|g|η2 dtdx.

(2.17)

Since ψ′′ = (ψ′)2, (ψ2)′′ = 2(ψ′)2(1 + ψ), we have

α

∫ t

τ0

∫
Bρ

u1−
1
α (ψ2)′′|∇u|2η2 dtdx

= 2α

∫ t

τ0

∫
Bρ

u1−
1
α |∇w|2η2 dtdx+ 2α

∫ t

τ0

∫
Bρ

u1−
1
αw|∇w|2η2 dtdx.

Combining estimates (2.17), we have from (2.16) that

1

2

∫
Bρ

w2(t)η2(t) dx+
α− 1

2

∫ t

τ0

∫
Bρ

u−
1
α (ψ2)′η2|∇u|2 dtdx

+
3

2
α

∫ t

τ0

∫
Bρ

u1−
1
α |∇w|2η2 dtdx+ α

2

∫ t

τ0

∫
Bρ

u1−
1
αw|∇w|2η2 dtdx

≤ 1

2

∫
Bρ

w2(τ0)η
2(τ0) dx+ 6α

∫ t

τ0

∫
Bρ

u1−
1
αw|∇η|2 dtdx

+
α− 1

2

∫ t

τ0

∫
Bρ

u−
1
α (ψ2)′|f |2η2 dtdx

+ 2α

∫ t

τ0

∫
Bρ

u1−
1
α (ψ′)2(1 + 2w)|f |2η2 dtdx

+ 2α

∫ t

τ0

∫
Bρ

u1−
1
αwψ′|g|η2 dtdx

=: I6 + I7 + I8 + I9 + I10.

(2.18)
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For simplicity, we put k′ = µ+ − c = µ+ − ω
2r0

. First, we estimate the left-hand side of
(2.18). Since k′ > k, we have

1

2

∫
Bρ

w2(t)η2(t) dx ≥ 1

2

∫
B(1−σ0)ρ

∩{u(t)>k′}
w2(t) dx

≥ 1

2

∫
B(1−σ0)ρ

∩{u(t)>k′}
log2

(
H

H − (k′ − k) + c

)
dx

≥ 1

2
log2

( ω
4
ω

2r0−1

)
|B(1−σ0)ρ ∩ {u(t) > k′}|

=
1

2
(r0 − 3)2 log2 2|B(1−σ0)ρ ∩ {u(t) > k′}|.

(2.19)

Second, we estimate I6. Taking τ0 as in Lemma 2.13 with θ = θ0
2
, we obtain

w = log+

(
H

H − (u− k)+ + c

)
≤ log

( 1
2
ω

1
2r0
ω

)
= (r0 − 1) log 2

and hence

I6 ≤
1

2

∫
Bρ∩{u(τ0)>k}

w2(τ0) dx

≤ 1

2
(r0 − 1)2 log2 2|Bρ ∩ {u(τ0) > k}| ≤ 1

2
· 1− θ0

1− θ0
2

(r0 − 1)2 log2 2|Bρ|.
(2.20)

We estimate I7. From t− τ0 ≤ ρ2

M1− 1
α
and the inequality (2.4), we have

(2.21) I7 ≤ 6α(µ+)1−
1
α (t− τ0)(r0 − 1) log 2

(
2

σ0ρ

)2

|Bρ| ≤ C(α)
(r0 − 1

σ2
0

)
|Bρ|.

We estimate I8. Since

ψ′ ≤ 1

H − (u− k)+ + c
≤ 1

c
=

2r0

ω
,

(ψ2)′ = 2ψψ′ ≤ 2r0+1

ω
(r0 − 1) log 2

and

u−
1
α ≤ k−

1
α ≤

(
ω

2

)− 1
α

for u ≥ k,

we have

I8 ≤ C(α)(r0 − 1)2r0ω−1− 1
α

∫ t

τ0

∫
Bρ∩{u(s)>k}

|f |2 dtdx.

By the definition of the weak Lp space and by the Hölder inequality, we have∫ t

τ0

∫
Bρ∩{u(s)>k}

|f |2 dtdx ≤
∫ t

τ0

∥∥|f(s)|2∥∥
L

p
2
w (Bρ)

|Bρ ∩ {u(s) > k}|1−
2
p ds

≤ C(n, p)M
2
q
(1− 1

α
)
∥∥|f |2∥∥

L
q
2 (L

p
2
w )(Qρ,M )

ρ2γ0
|Bρ|
M1− 1

α

.
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Using the inequality (2.5), we obtain

I8 ≤ C(n, α, p)
(ρ2γ0
ω2

M
2
q
(1− 1

α
)
∥∥|f |2∥∥

L
q
2 (L

p
2
w )(Qρ,M )

)( ω
M

)1− 1
α
(r0 − 1)2r0 |Bρ|

≤ C(n, α, p)
(ρ2γ0
ω2

M
2
q
(1− 1

α
)
∥∥|f |2∥∥

L
q
2 (L

p
2
w )(Qρ,M )

)
(r0 − 1)2r0 |Bρ|.

(2.22)

We estimate I9 and I10. As the estimate of I8 (more easy to estimate since u1−
1
α ≤M1− 1

α ),
we have

(2.23) I9 ≤ C(n, α, p)
(ρ2γ0
ω2

M
2
q
(1− 1

α
)
∥∥|f |2∥∥

L
q
2 (L

p
2
w )(Qρ,M )

)
22r0(1 + 2(r0 − 1) log 2)|Bρ|

and

(2.24) I10 ≤ C(n, α, p)
(ρ2γ0
ω
M

2
q
(1− 1

α
)
∥∥g∥∥

L
q
2 (L

p
2
w )(Qρ,M )

)
2r0(r0 − 1)|Bρ|.

Combining those estimates (2.19)–(2.24), we have

|B(1−σ0)ρ ∩ {u(t) > k′}| ≤

{
1− θ0

1− θ0
2

(
r0 − 1

r0 − 3

)2

+
C1(α)

σ2
0

r0 − 1

(r0 − 3)2

+ C2(n, α, p)
(ρ2γ0
ω2

M
2
q
(1− 1

α
)
∥∥|f |2∥∥

L
q
2 (L

p
2
w )(Qρ,M )

)2r0(r0 − 1)

(r0 − 3)2

+ C3(n, α, p)
(ρ2γ0
ω2

M
2
q
(1− 1

α
)
∥∥|f |2∥∥

L
q
2 (L

p
2
w )(Qρ,M )

)22r0(1 + 2(r0 − 1) log 2)

(r0 − 3)2

+ C4(n, α, p)
(ρ2γ0
ω
M

2
q
(1− 1

α
)
∥∥g∥∥

L
q
2 (L

p
2
w )(Qρ,M )

)2r0(r0 − 1)

(r0 − 3)2

}
|Bρ|.

Since

|Bρ ∩ {u(t) > k′}| = |(Bρ \B(1−σ0)ρ) ∩ {u(t) > k′}|+ |B(1−σ0)ρ ∩ {u(t) > k′}|
≤ (1− (1− σ0)

n)|Bρ|+ |B(1−σ0)ρ ∩ {u(t) > k′}|,

we have

|B(1−σ0)ρ ∩ {u(t) > k′}| ≤

{
1− θ0

1− θ0
2

(
r0 − 1

r0 − 3

)2

+
C1(α)

σ2
0

r0 − 1

(r0 − 3)2
+ (1− (1− σ0)

n)

+ max{C2, C3, C4}
ρ2γ0

ω2
M

2
q
(1− 1

α
)h(ρ,M, ω)C5(r0)

}
|Bρ|,

where

C5(r0) = max

{
2r0(r0 − 1)

(r0 − 3)2
,
22r0(1 + 2(r0 − 1) log 2)

(r0 − 3)2

}
.

We choose parameters r0, γ and δ2. First we choose σ0 = σ0(n, θ0) satisfying 1− (1−
σ0)

n ≤ 1
8
θ20. Second, we choose r0 = r0(n, α, θ0) satisfying(

r0 − 1

r0 − 3

)2

≤
(
1− θ0

2

)
(1 + θ0) and

C1(α)

σ2
0

r0 − 1

(r0 − 3)2
≤ 1

8
θ20.
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Finally, we choose δ2 = δ2(n, α, p, θ0) > 0 sufficiently small such that

max{C2, C3, C4}C5(r0)δ2 ≤
1

2
θ20.

Then, if ρ2γ0 ≤ δ2ω
2M− 2

q
(1− 1

α
)h(ρ,M, ω)−1, we have

|Bρ ∩ {u(t) > k′}| ≤
(
1−

(
θ0
2

)2)
|Bρ|.

□

Lemma 2.15 (the Caccioppoli estimate for super-level sets). Let η = η(t, x) be a cut-
off function in Qθ0

ρ,M . For k ≥ µ+ − ω
2
, there exists a constant C > 0 depending only on α

such that

(2.25) sup
t∈Iθ0ρ,M

∫
Bρ

(u(t)− k)2+η
2(t) dx+M1− 1

α

∫∫
Q

θ0
ρ,M

|∇(u− k)+|2η2 dtdx

≤ C

{(M
µ+

)1− 1
α

∫∫
Q

θ0
ρ,M

(u− k)2+∂tη
2 dtdx+M1− 1

α

∫∫
Q

θ0
ρ,M

(u− k)2+|∇η|2 dtdx

+M1− 1
αh(ρ,M, ω)

(∫
t∈Iθ0ρ,M

|Bρ ∩ {u(t) > k}|q
′( 1

2
− 1

p
) dt

) 2
q′
}
,

where 1
2
= 1

q
+ 1

q′
and |Bρ ∩ {u(t) > k}| denotes the Lebesgue measure on Rn.

Proof of Lemma 2.15. Testing the function (u− k)+η
2 to (2.3), we have

1

α

∫∫
Q

θ0
ρ,M

∂t

(∫ (u−k)+

0

(k + ξ)
1
α
−1ξ dξ

)
η2 dtdx+

∫∫
Q

θ0
ρ,M

∇(u− k)+ · ∇{(u− k)+η
2} dtdx

=

∫∫
Q

θ0
ρ,M

f · ∇{(u− k)+η
2} dtdx+

∫∫
Q

θ0
ρ,M

g(u− k)+η
2 dtdx.

By the integration by parts, we obtain

1

α
sup

t∈Iθ0ρ,M

∫
Bρ

(∫ (u(t)−k)+

0

(k + ξ)
1
α
−1ξ dξ

)
η2(t) dx+

∫∫
Q

θ0
ρ,M

|∇(u− k)+|2η2 dtdx

≤ 1

α

∫∫
Q

θ0
ρ,M

(∫ (u−k)+

0

(k + ξ)
1
α
−1ξ dξ

)
∂tη

2 dtdx−
∫∫

Q
θ0
ρ,M

(∇(u− k)+ · ∇η2)(u− k)+ dtdx

+

∫∫
Q

θ0
ρ,M

f · ∇(u− k)+η
2 dtdx+

∫∫
Q

θ0
ρ,M

(f · ∇η2)(u− k)+ dtdx

+

∫∫
Q

θ0
ρ,M

g(u− k)+η
2 dtdx

=: I1 + I2 + I3 + I4 + I5.

(2.26)
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By the Young inequality and k > µ+ − ω
2
, we have

I2 ≤
1

2

∫∫
Q

θ0
ρ,M

|∇(u− k)+|2η2 dtdx+ 2

∫∫
Q

θ0
ρ,M

(u− k)2+|∇η|2 dtdx,

I3 ≤
1

4

∫∫
Q

θ0
ρ,M

|∇(u− k)+|2η2 dtdx+
∫∫

Q
θ0
ρ,M∩{u>k}

|f |2η2 dtdx,

I4 ≤
∫∫

Q
θ0
ρ,M

(u− k)2+|∇η|2 dtdx+
∫∫

Q
θ0
ρ,M∩{u>k}

|f |2η2 dtdx,

I5 ≤
ω

2

∫∫
Q

θ0
ρ,M∩{u>k}

|g|η2 dtdx.

(2.27)

We estimate the first term of the left-hand side in (2.26). Since

(k + ξ)
1
α
−1 ≥ u

1
α
−1 ≥ (µ+)

1
α
−1 ≥M

1
α
−1 for 0 ≤ ξ ≤ (u− k)+,

we have

(2.28)

∫ (u(t)−k)+

0

(k + ξ)
1
α
−1ξ dξ ≥ 1

2
M

1
α
−1(u(t)− k)2+.

Finally, we estimate I1. By (2.5), we have

(k + ξ)
1
α
−1 ≤ k

1
α
−1 ≤

(
µ+ − ω

2

) 1
α
−1

≤
(1
3
µ+
) 1

α
−1

and hence

(2.29) I1 ≤
1

2

(1
3
µ+
) 1

α
−1
∫∫

Q
θ0
ρ,M

(u− k)2+∂tη
2 dtdx.

Combining of those estimates (2.27), (2.28) and (2.29), we obtain

M
1
α
−1 sup

t∈Iθ0ρ,M

∫
Bρ

(u(t)− k)2+η
2(t) dx+

∫∫
Q

θ0
ρ,ω

|∇(u− k)+|2η2 dtdx

≤ C(α)

{
(µ+)

1
α
−1

∫∫
Q

θ0
ρ,M

(u− k)2+∂tη
2 dtdx+

∫∫
Q

θ0
ρ,M

(u− k)2+|∇η|2 dtdx

+

∫∫
Q

θ0
ρ,M∩{u>k}

|f |2η2 dtdx+ ω

2

∫∫
Q

θ0
ρ,M∩{u>k}

|g|η2 dtdx
}
.

As the same argument of the proof of Lemma 2.11, we have∫∫
Q

θ0
ρ,M∩{u>k}

|f |2η2 dtdx ≤
∥∥|f |2∥∥

L
q
2 (L

p
2
w )(Q

θ0
ρ,M )

(∫
I
θ0
ρ,M

|Bρ ∩ {u(t) > k}|q
′( 1

2
− 1

p
) dt

) 2
q′

,

∫∫
Q

θ0
ρ,M∩{u>k}

|g|η2 dtdx ≤ ∥g∥
L

q
2 (L

p
2
w )(Q

θ0
ρ,M )

(∫
I
θ0
ρ,M

|Bρ ∩ {u(t) > k}|q
′( 1

2
− 1

p
) dt

) 2
q′

.

Substituting these estimates, we obtain (2.25). □
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Lemma 2.16. Let ρ0 = 3
4
ρ. For 0 < ν < 1, there exist q0 , δ1 > 0 depending only on

n, α, p, q, θ0 and ν such that if ργ0 ≤ δ2ωM
− 1

q
(1− 1

α
)h(ρ,M, ω), then∣∣∣∣Qθ0

ρ0,M
∩
{
u > µ+ − ω

2q0+1

}∣∣∣∣ ≤ ν|Qθ0
ρ0,M

|,

where |Qθ0
ρ0,M

∩
{
u > µ+ − ω

2q0+1

}
| and |Qθ0

ρ0,M
| denote the Lebesgue measure on Rn+1.

Remark 2.17. We obtain the estimate of δ1 as

δ1 ≤ θ
1
q
− 1

2

0 2−q0 .

Proof of Lemma 2.16. We fix t ∈ Iθ0ρ,M and set

l := µ+ − ω

2j+1
, k := µ+ − ω

2j
,

where j ≥ r0 and the constant r0 is given by Lemma 2.14. By the Poincaré type inequality
(cf. Proposition B.4), we have

ω

2j+1
|Bρ0 ∩ {u(t) > l}| ≤ C(n)ρn+1

0

|Bρ0 ∩ {u(t) ≤ k}|

∫
Bρ0∩{k<u(t)≤l}

|∇u(t)| dx.

Since k > µ+ − ω
2r0

and Lemma 2.14, we have

|Bρ0 ∩ {u(t) ≤ k}| = |Bρ0 | − |Bρ0 ∩ {u(t) > k}| ≥
(
θ0
2

)2

|Bρ0 |

and hence

(2.30)
ω

2j+1
|Bρ0 ∩ {u(t) > l}| ≤ C(n)ρ0

θ20

∫
Bρ0∩{k<u(t)≤l}

|∇u(t)| dx.

Integrating over Iθ0ρ0,M for (2.30), we obtain

ω

2j+1
|Qθ0

ρ0,M
∩ {u > l}| ≤ C(n)ρ0

θ20

∫
I
θ0
ρ0,M

∫
Bρ0∩{k<u(t)≤l}

|∇u(t)| dtdx

≤ C(n)ρ0
θ20

∥∇(u− k)+∥L2(Q
θ0
ρ0,M

)
|Qθ0

ρ0,M
∩ {k < u ≤ l}|

1
2 .

We estimate ∥∇(u−k)+∥L2(Q
θ0
ρ0,M

)
. Let η = η(t, x) be a cut-off function in Qθ0

ρ,M satisfying

η ≡ 1 on Qθ0
ρ0,M

, |∇η| ≤ 8

ρ
and ∂tη ≤ 10M1− 1

α

θ0ρ2
.

Then, by the Caccioppoli estimate (Lemma 2.15), we have

∥∇(u− k)+∥2L2(Q
θ0
ρ0,M

)
≤ ∥∇(u− k)+η∥2L2(Q

θ0
ρ,M )

≤ C(α)

{∫∫
Q

θ0
ρ,M

(u− k)2+(|∇η|2 + (µ+)
1
α
−1∂tη

2) dtdx

+ h(ρ,M, ω)

(∫
I
θ0
ρ,M

|Bρ ∩ {u(t) > k}|q
′( 1

2
− 1

p
) dt

) 2
q′
}

=: I1 + I2.

(2.31)

33



We estimate I1. By the inequality (2.4), we have

I1 ≤ C(α)(µ+ − k)2+

(
1

ρ2
+
M1− 1

α

θ0ρ2
(µ+)

1
α
−1

)
|Qθ0

ρ0,M
|

≤ C(α)

(
ω

2j

)2
1

θ0ρ2

(
M

µ+

)1− 1
α

|Qθ0
ρ0,M

| ≤ C(α)

(
ω

2j

)2
1

θ0ρ2
|Qθ0

ρ0,M
|.

(2.32)

We estimate I2. Since

(∫
I
θ0
ρ,M

|Bρ ∩ {u(t) > k}|q
′( 1

2
− 1

p
) dt

) 2
q′

≤ |Bρ|1−
2
p

(θ0
2

ρ2

M1− 1
α

) 2
q′

≤ C(q)|Bρ|−
2
p

(θ0
2

ρ2

M1− 1
α

) 2
q′−1

|Qθ0
ρ0,M

|

≤ C(q)|Bρ|−
2
p

(θ0
2

ρ2

M1− 1
α

) 2
q′−1

|Qθ0
ρ0,M

|

≤ C(n, p, q)

(
ρ2γ0M

2
q
(1− 1

α
)

(
2j

ω

)2

θ
2
q′
0

)
1

θ0ρ2

(
ω

2j

)2

|Qθ0
ρ0,M

|,

we obtain

(2.33) I2 ≤ C(n, α, p, q)

(
ρ2γ0M

2
q
(1− 1

α
)

(
2j

ω

)2

θ
2
q′
0 h(ρ,M, ω)

)
1

θ0ρ2

(
ω

2j

)2

|Qθ0
ρ0,M

|.

Substituting those estimates (2.32) and (2.33) for (2.31), we obtain

∥∇(u− k)+∥2L2(Q
θ0
ρ0,M

)

≤ C(n, α, p, q)
(
1 + ρ2γ0M

2
q
(1− 1

α
)

(
2j

ω

)2

θ
2
q′
0 h(ρ,M, ω)

) 1

θ0ρ2

(
ω

2j

)2

|Qθ0
ρ0,M

|

and hence

(
ω

2j+1

)2

|Qθ0
ρ0,M

∩ {u > l}|2

≤ C(n, α, p, q)

θ50

(
ω

2j

)2(
1 + ρ2γ0M

2
q
(1− 1

α
)

(
2j

ω

)2

θ
2
q′
0 h(ρ,M, ω)

)
× |Qθ0

ρ0,M
| · |Qθ0

ρ0,M
∩ {k < u ≤ l}|.
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Summing over i = r0 + 1, . . . , q0, we have

q0∑
i=r0+1

∣∣∣∣Qθ0
ρ0,M

∩
{
u > µ+ − ω

2i+1

}∣∣∣∣2
≤ C(n, α, p, q)

θ50
|Qθ0

ρ0,M
|

q0∑
i=r0+1

(
1 + ρ2γ0M

2
q
(1− 1

α
)

(
2j

ω

)2

θ
2
q′
0 h(ρ,M, ω)

)
×
∣∣∣∣Qθ0

ρ0,M
∩
{
µ+ − ω

2i
< u ≤ µ+ − ω

2i+1

}∣∣∣∣
≤ C(n, α, p, q)

θ50
|Qθ0

ρ0,M
|
(
1 + ρ2γ0M

2
q
(1− 1

α
)

(
2q0

ω

)2

θ
2
q′
0 h(ρ,M, ω)

)
×

∞∑
i=r0+1

∣∣∣∣Qθ0
ρ0,M

∩
{
µ+ − ω

2i
< u ≤ µ+ − ω

2i+1

}∣∣∣∣
≤ C(n, α, p, q)

θ50
|Qθ0

ρ0,M
|2.
(
1 + ρ2γ0M

2
q
(1− 1

α
)

(
2q0

ω

)2

θ
2
q′
0 h(ρ,M, ω)

)
.

We take q0 > 0 enough large such that

2C(n, α, p, q)

θ50(q0 − r0)
≤ ν2.

Since

q0∑
i=r0+1

∣∣∣∣Qθ0
ρ0,M

∩
{
u > µ+ − ω

2i+1

}∣∣∣∣2 ≥ (q0 − r0)

∣∣∣∣Qθ0
ρ0,M

∩
{
u > µ+ − ω

2q0+1

}∣∣∣∣2,
we have ∣∣∣∣Qθ0

ρ0,M
∩
{
u > µ+ − ω

2q0+1

}∣∣∣∣2 ≤ 2C(n, α, p, q)

θ50(q0 − r0)
|Qθ0

ρ0,M
|2

≤ ν2|Qθ0
ρ0,M

|2

provided ρ2γ0 ≤ min{θ
− 2

q′
0 2−2q0 , δ22}ω2M− 2

q
(1− 1

α
)h(ρ,M, ω)−1, where δ2 > 0 is given by

Lemma 2.14. Taking δ21 := min{θ
− 2

q′
0 2−2q0 , δ22}, we obtain Lemma 2.16. □

Proof of Proposition 2.12. This argument is same as the proof of Proposition
2.10. Let 0 < ν < 1 be chosen later. We take δ1 > 0 and q0 as in Lemma 2.16. We
introduce the following scale transform

s =M1− 1
α t, ũ(s, x) = u(t, x), η̃(s, x) = η(t, x), f̃(s, x) = f(t, x) and g̃(s, x) = g(t, x).
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Then, using (2.4), we can rewrite the Caccioppoli estimate (2.25) as follows:

sup
s∈Iθ0ρ

∫
Bρ

(ũ(s)− k)2+η̃
2(s) dx+

∫∫
Q

θ0
ρ

|∇(ũ− k)+|2η̃2 dsdx

≤ C(α)

{∫∫
Q

θ0
ρ

(ũ− k)2+

{(M
µ+

)1− 1
α
∂sη̃

2 + |∇η̃|2
}
dsdx

+ h̃(ρ, ω)

(∫
I
θ0
ρ

|Bρ ∩ {ũ(s) > k}|q
′( 1

2
− 1

p
) ds

) 2
q′
}

≤ C(α)

{∫∫
Q

θ0
ρ

(ũ− k)2+

{
∂sη̃

2 + |∇η̃|2
}
dsdx

+ h̃(ρ, ω)

(∫
I
θ0
ρ

|Bρ ∩ {ũ(s) > k}|q
′( 1

2
− 1

p
) ds

) 2
q′
}

(2.34)

where h̃(ρ, ω) :=
∥∥f̃∥∥2

Lq(Lp
w)(Qρ)

+ ω∥g̃∥
L

q
2 (L

p
2
w )(Qρ)

.

We take p∗, q∗ > 0 as in the proof of Proposition 2.10 and for i ∈ N we take ρ =
ρi, k = ki, η̃ = η̃i satisfying η̃i ≡ 1 on Qθ0

ρi+1
and

ki = µ+ − ω

2q0
+

1

2q0+i+2
ω, ρi =

1

2
ρ+

1

2i+2
ρ,

Yi :=
|Qθ0

ρi
∩ {ũ > ki}|
|Qθ0

ρ0 |
, Zi =

ρ20
|Qθ0

ρ0|

(∫
I
θ0
ρi

|Bρi ∩ {ũ(s) > ki}|
q∗
p∗ ds

) 2
q∗
,

|∇η̃i| ≤
2

ρi − ρi+1

≤ 12 · 2i

ρ0
, ∂sη̃i ≤

4

θ0

1

ρ2i − ρ2i+1

≤ 48 · 22i

θ0ρ2
.

From (2.34) and (ũ− ki)+ ≤ ω
2q0+1 , we obtain

∥(ũ− ki)+η̃i∥2L∞(L2)∩L2(Ḣ1)(Q
θ0
ρi

)

≤ C(α)

{∫∫
Q

θ0
ρi

(ũ− ki)
2
+

{
∂sη̃i

2 + |∇η̃i|2
}
dsdx

+ h̃(ρ, ω)

(∫
I
θ0
ρi

|Bρ ∩ {ũ(s) > ki}|q
′( 1

2
− 1

p
) ds

) 2
q′
}

≤ C(α)

{( ω
2q0

)2( 1

θ0
+ 1
)22i
ρ2

|Qθ0
ρi
∩ {ũ > ki}|

+ h̃(ρ, ω)

(∫
I
θ0
ρi

|Bρ ∩ {ũ(s) > ki}|
q∗
p∗ ds

) 2
q∗

(1+
2γ0
n

)
}

≤ C(α, θ0)
|Qθ0

ρ0
|

ρ20

( ω
2q0

)2{
22iYi + h̃(ρ, ω)

(2q0
ω

)2( |Qθ0
ρ0
|

ρ20

) 2γ0
n
Z

1+
2γ0
n

i

}
.
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Since δ1 ≤ θ
− 1

q′
0 2−q0 , we have

h̃(ρ, ω)
(2q0
ω

)2( |Qθ0
ρ0
|

ρ20

) 2γ0
n ≤ C(n, p, q, θ0)

and hence

∥(ũ− ki)+η̃i∥2L∞(L2)∩L2(Ḣ1)(Q
θ0
ρi

)
≤ C(n, α, p, q, θ0)

( ω
2q0

)2 |Qθ0
ρ0
|

ρ0

{
22iYi + Z

1+
2γ0
n

i

}
.

By the Ladyženskaja inequality (cf. Proposition B.2) and the Hölder inequality, we have

∥(ũ− ki)+η̃i∥2L2(Q
θ0
ρi

)
≤ ∥(ũ− ki)+η̃i∥2

L2+ 4
n (Q

θ0
ρi

)
∥χ{ũ>ki}∥2Ln+2(Q

θ0
ρi

)

≤ C(n, α, p, q, θ0)
( ω
2q0

)2 |Qθ0
ρ0
|1+

2
n+2

ρ20
Y

2
n+2

i

{
22iYi + Z

1+
2γ0
n

i

}
and

∥(ũ− ki)+η̃i∥2Lq∗ (Lp∗ )(Q
θ0
ρi

)
≤ C(n, α, p, q, θ0)

( ω
2q0

)2 |Qθ0
ρ0
|

ρ20

{
22iYi + Z

1+
2γ0
n

i

}
.

Since

∥(ũ− ki)+η̃i∥2L2(Q
θ0
ρi

)
≥ ∥(ũ− ki)+∥2L2(Q

θ0
ρi+1

∩{ũ>ki+1})

≥ (ki+1 − ki)
2|Qθ0

ρi+1
∩ {ũ > ki+1}| =

(
ω

2q0+i+3

)2

|Qθ0
ρ0
|Yi+1

and

∥(ũ− ki)+η̃i∥2Lq∗ (Lp∗ )(Q
θ0
ρi

)
≥ ∥(ũ− ki)+∥2Lq∗Lp∗ (Q

θ0
ρi+1

∩{ũ>ki+1})

≥
(

ω

2q0+i+3

)2 |Qθ0
ρ0
|

ρ20
Zi+1,

we obtain

Yi+1 ≤ C(n, α, p, q, θ0)
{
24iY

1+ 2
n+2

i + 22iY
2

n+2

i Z
1+

2γ0
n

i

}
and

Zi+1 ≤ C(n, α, p, q, θ0)
{
24iYi + 22iZ

1+
2γ0
n

i

}
.

As the similar calculus in the proof of Proposition 2.10, we obtain

Z0 ≤

C(n, p, q, θ0)Y
2
p∗
0 if q ≥ p,

C(n, p, q, θ0)Y
2
q∗
0 if q < p.

Therefore, by Lemma B.13, there exists 0 < ν = ν(n, α, p, q, θ0) < 1 such that if Y0 ≤ ν,
then Yi → 0 as i→ ∞, i.e.

ũ(s, x) < µ+ − ω

2q0+2
a.a. (s, x) ∈ Qθ0

ρ
2
.

By Lemma 2.16, we obtain the upper bounds of u. □
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CHAPTER 3

Regularity and asymptotic behavior for the Keller-Segel system
of degenerate type with critical nonlinearity

1. The Keller-Segel system of degenerate type

We consider the large time behavior of the global solution of the degenerate parabolic
elliptic system:

(3.1)


∂tu−∆uα + div(u∇ψ) = 0, t > 0 , x ∈ Rn,

−∆ψ + ψ = u, t > 0 , x ∈ Rn,

u(0, x) = u0(x) ≥ 0, x ∈ Rn,

where α > 1. This system is described as the dynamics of the chemical attracted mold.
The equation originally consists of two reaction diffusion equations. By taking the zero
relaxation time limit, one can obtain the above form as the result. For the case of α = 1,
it is semi-linear problem and the system (3.1) is analyzed by many authors. For α > 1,
the problem (3.1) is degenerate parabolic elliptic system and there are some work on
it (Biler-Nadzieja-Stańczy [7], Dı́az-Galiano-Jüngel [16, 17], Luckhaus-Sugiyama [32],
Ogawa [39, 40], Sugiyama [46], Sugiyama-Kunii [48]). On the other hand, the system
has a strong relation with the variational structure and the large time behavior of the
solution is really depending on the variational functional reduced from the entropy-energy
inequality.

W [u](t) ≡ 1

α− 1
∥u(t)∥αα − 1

2

∫
Rn

u(t)ψ(t) dx ≤ W [u0].

Then it appears that there exists a critical exponent α = 2− 2
n
that the global behavior of

the solution is changed. This exponent is considered as a threshold exponent to separate
the global stability of the weak solution. Roughly speaking, the small solution with small
initial data decays as t → ∞. Then the main concern for this case is its asymptotic
profile. By the self-similar rescaling, one may find that there appears some particular
profile in its rescaled form. On the other hand, the equation is degenerated and it has
some hyperbolic like feature in its weak solution when the solution meets zero. In this
case, the regularity breaks down and the behavior is governed by the hyperbolic like
structure. The most possible regularity for the weak solution is generally known as the
Hölder continuity. Indeed, to show the asymptotic profile of the decaying solution, the
regularity of the weak solution plays an important role.

In this chapter, we consider the regularity problem of the system (3.1) and apply
it for the asymptotic stability of the decaying solution in the critical case and show its
convergence rate for the asymptotic profile if it is rescaled in the self-similar way. Since

This chapter is taken from the paper [41] which is the joint work with Professor Ogawa.
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the equation is degenerated, the smoothness of the solution is not generally obtained and
we necessarily consider the weak solution.

Definition 3.1. Let α > 1. For non-negative initial data u0 ∈ L1(Rn) ∩ Lα(Rn), we
call (u, ψ) a weak solution of the system (3.1) if there exists T > 0 such that

(1) u(t, x) ≥ 0 for almost all (t, x) ∈ [0, T )× Rn;
(2) u ∈ L∞(0, T ;L1(Rn) ∩ Lα(Rn)) with ∇uα ∈ L2((0, T )× Rn);
(3) u satisfies (3.1) in the sense of distribution, that is for any ϕ ∈ C∞([0, T ] ;C∞

0 (Rn)),
we have

(3.2)

∫
Rn

u(t)ϕ(t) dx−
∫
Rn

u0ϕ(0) dx

=

∫ t

0

dτ

∫
Rn

{u(τ)∂tϕ(τ)−∇uα(τ) · ∇ϕ(τ) + u(τ)∇ψ(τ) · ∇ϕ(τ)} dx

for almost all 0 < t < T , where ψ = (−∆+ 1)−1u is given by the Bessel potential.

We may obtain the time local weak solution of (3.1) by some approximating procedure.
Then the existence of time global weak solution is classified by a threshold exponent
α = 2− 2

n
. We summarize the known results for the existence and non-existence of time

global weak solutions.

Proposition 3.2 (Biler-Nadzieja-Stańczy [7], Sugiyama [47], Sugiyama-Kunii [48]).
Let n ≥ 3, α > 1 and assume that u0 ∈ L1(Rn) ∩ Lα(Rn). Then there exists a weak
solution of (u, ψ) of (3.1) that satisfies for 0 < t < T ,

∥u(t)∥L1(Rn) = ∥u0∥L1(Rn),

W (t) +

∫ t

0

∫
Rn

u(τ)

∣∣∣∣ α

α− 1
∇uα−1 −∇ψ

∣∣∣∣2 dxdτ ≤ W (0),
(3.3)

where

W (t) =
1

α− 1
∥u∥αLα(Rn) −

1

2
∥(−∆+ 1)−

1
2u(t)∥2L2(Rn).

In addition:

(1) If α > 2− 2
n
, then for any initial data u0 the solution exists globally in time and the

solution is uniformly bounded.
(2) For 2− 4

n+2
< α ≤ 2− 2

n
and the initial data satisfying W (0) > 0 with

(3.4) ∥u0∥1−γ
L1(Rn)W (0)

γ−α+1
α < C∥En∥−1

L
n

n−2
w (Rn)

,

then the weak solution exists globally in time where En is the fundamental solution of
−∆+ 1 in Rn, Lq

w(Rn) is the weak Lebesgue space and γ + 1 = α
α−2

n−2
n
.

(3) In particular, if α = 2− 2
n
, then the above condition (3.4) is given by

(3.5) ∥u0∥
2
n

L1(Rn) <
2n

n− 2
∥En∥−1

L
n

n−2
w (Rn)

.

(4) If 1 < α ≤ 2 − 2
n
, and the initial data u0 ∈ L1(Rn) ∩ Lα(Rn) with |x|2u0 ∈ L1(Rn)

satisfies W (0) < 0, then the weak solution blows up in a finite time T in the following
sense:

lim sup
t→T

∥u(t)∥Lq(Rn) = ∞ for all α ≤ q ≤ ∞.
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By Proposition 3.2, the weak solution to (3.1) exists globally in time when n ≥ 3,
2− 4

n+2
< α ≤ 2− 2

n
and the initial data is sufficiently small. When we consider the small

data problem, then system can be regarded as the perturbed problem from the porous
medium equation:

(3.6)

{
∂tw −∆wα = 0, t > 0, x ∈ Rn,

w(0, x) = w0(x), x ∈ Rn.

For the porous medium equation, there exists an explicit solution called the Barenblatt-
Pattle solution

Definition 3.3 (the Barenblatt-Pattle solution). For α > 1, we set σ = n(α− 1)+2.
For some A > 0, the function U (t) defined by

(3.7) U (t, x) = (1 + σt)−
n
σ

(
A− α− 1

2α

|x|2

(1 + σt)
2
σ

) 1
α−1

+

is called as the Barenblatt-Pattle solution, where (f(t, x))+ = max{f(t, x), 0}.

It is well-known that the Barenblatt-Pattle solution solves the porous medium equation

(3.6) with the initial data w0(x) =
(
A− α−1

2α
|x|2
) 1

α−1

+
.

In the case α ≤ 2 − 2
n
, and the initial data u0 is small, then we may regard the non-

linear term div(u∇ψ) in (3.1) as a small perturbation and we speculate that the solution
(3.1) asymptotically converges to the solution of the porous medium equation. In fact,
Luckhaus-Sugiyama [32] showed the asymptotic behavior of the solution in Lp spaces for
1 < α ≤ 2− 2

n
, n ≥ 3 and 1 ≤ p ≤ ∞. Ogawa [40] showed that if 1 < α < 2− 2

n
, then we

obtain the algebraic convergence rate of the solution in L1 space via the argument due to
Carrillo-Toscani [15] and the critical Sobolev type inequality (cf. Ogawa-Taniuchi [42]).
Namely, for 1 < α < 2 − 2

n
and W (0) > 0 with (3.4) then there exist ν > 0 and C > 0

such that

(3.8) ∥u(t)− U (t)∥L1(Rn) ≤ C(1 + t)−ν , t > 0,

where U is the Barenblatt-Pattle solution with ∥U (0)∥1 = ∥u0∥1.
In this chapter, we show the same asymptotic convergence in L1(Rn) for the critical

case α = 2− 2
n
. Our main theorem is the following:

Theorem 3.4. Let α = 2− 2
n
and n ≥ 3. Assume that u0 ∈ L1(Rn)∩Lα(Rn) satisfying

W (0) > 0, (3.5), ∥u0∥1 < 2 and |x|au0 ∈ L1(Rn) for some a > n. Then, there exist C > 0
and ν > 0 such that the corresponding global weak solution u of (3.1) satisfies

(3.9) ∥u(t)− U (t)∥L1(Rn) ≤ C(1 + σt)−ν , t > 0,

where U is the Barenblatt-Pattle solution with ∥U (0)∥1 = ∥u0∥1.

To show the asymptotic stability of decaying solution, we necessarily consider the
regularity of the solution. Indeed, the weak solution to the degenerate problem (3.1) has
a hyperbolic feature in it when the solution meets zero. In this case, the equation lost
the parabolic behavior and the solution behaves as if it is a solution of the hyperbolic
equation. In the proof of Ogawa [40], the Hölder regularity is used essential way to show
the asymptotic stability estimate. To see this, we firstly introduce the forward self-similar
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transform, which plays an important role in studying the asymptotic behavior of the
solution. We introduce the forward self-similar scaling (t′, x′) as

t′ =
1

σ
log(1 + σt), x′ =

x

(1 + σt)
1
σ

,

where σ = n(α− 1) + 2 and the forward self-similar transform (v(t′, x′), ϕ(t′, x′)) as

v(t′, x′) = (1 + σt)
n
σu(t, x), ϕ(t′, x′) = (1 + σt)

n
σψ(t, x).

Then, the forward self-similar transform (v, ϕ) satisfies the following degenerate parabolic
elliptic system:

(3.10)


∂t′v − divx′(∇x′vα + x′v − e−κt′v∇x′ϕ) = 0, t′ > 0 , x′ ∈ Rn,

−e−2t′∆x′ϕ+ ϕ = v, t′ > 0 , x′ ∈ Rn,

v(0, x′) = u0(x
′) ≥ 0, x′ ∈ Rn,

where κ = n + 2 − σ = n(2 − α). The weak solution of the system (3.10) is similarly
defined as in the case for (3.1).

For 1 ≤ p ≤ ∞, we obtain

(3.11) (1 + σt)
n
σ
(1− 1

p
)∥u(t)− U (t)∥p = ∥v(t′)− V ∥p

where

V (x′) :=

(
A− α− 1

2α
|x′|2

) 1
α−1

+

= (1 + σt)
n
σ U (t, x)

is a self-similar profile of the Barenblatt-Pattle solution. If p = 1, then equation (3.11) is
rewritten by

∥u(t)− U (t)∥1 = ∥v(t′)− V ∥1.
For the sake of obtaining the convergence rate of the solution in L1, we show the

convergence rate of the forward self-similar transform in L1 space. Ogawa [40] showed
that if the self-similar transformed solution v is the uniformly Hölder continuous, then we
obtain the exponential convergence rate of the self-similar transform v. More precisely,

Proposition 3.5 (Ogawa [40]). Let α = 2 − 2
n
. Assume that an initial data u0

satisfies W (0) > 0 and (3.5). If the corresponding forward self-similar transform v is
uniformly Hölder continuous, then there exist ν > 0 and C > 0 such that

(3.12) ∥v(t′)− V ∥L1(Rn
y )

≤ Ce−νt′ , t′ > 0,

where V is the self-similar profile of the Barenblatt-Pattle solution with ∥V ∥1 = ∥u0∥1.

Our main concern is to obtain the algebraic convergence rate of the solution in L1

space for the case of critical exponent α = 2 − 2
n
. The reason why the critical case is

excluded in Ogawa [40] is because the uniform Hölder continuity of the rescaled weak
solution v(t′, x′) is required for proving algebraic convergence rate. The Hölder continuity
was obtained in Ogawa [40] for v(t′, x′) via the rescaled weak solution u(t, x) and hence
it was not the uniform estimate for (t′, x′). By this argument, the critical case has to be
necessarily excluded since the decaying factor e−(κ−2)t′ disappears in the crucial estimates.
To cover the critical case, we necessarily derive the uniform Hölder regularity of the
rescaled solution v(t′, x′) directly by assuming that the moment of the solution is uniformly
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bounded in time. Using Theorem 2.4 in Chapter 2, we obtain the following regularity
result:

Theorem 3.6. Let (v, ϕ) be a weak solution of the rescaled Keller-Segel system (3.10)
in (u, ψ) ∈ L∞(0, T ;L1 ∩ Lα) × L∞(0, T ;W 2,α). Assume that |x|au0 ∈ L1(Rn) for some
a > n. Then v(t′, x′) is uniformly Hölder continuous. Namely, there exist constants C > 0
and 0 < γ < 1 such that for any (t′, x′) and (s′, y′) ∈ (1,∞)× Rn, we obtain

|u(t′, x′)− u(s′, y′)| ≤ C(|t′ − s′|
γ
2 + |x′ − y′|γ).

To show Theorem 3.6, we put f = x′v − e−κt′v∇x′ϕ and apply Theorem 2.4. The
integrability of x′v is essential. Thanks to the uniform moment bound for the weak
solution, we may apply Theorem 2.4 with the external term div(x′v − e−κt′v∇ϕ). From
the uniform Hölder continuity of v, we may derive the convergence rate of the solution.

This chapter is organized as follows. In section 2, we study some properties of the
forward self-similar transform. Using these properties, we show uniform Hölder continuity
of the rescaled solution. In section 3, we consider the asymptotic convergence of the weak
solution of (3.1) by using the uniform Hölder continuity of the rescaled solution. We
compute the time derivative of the free energy functional.

2. Forward self-similar transform

In this section, we show the time decay of the global weak solution of the degenerated
Keller-Segel system. This is originally shown in Sugiyama [46] however, we present the
method of rescaling which is shown by Ogawa [39].

2.1. Rescaled equation. We introduce the new scaled variables (t′, x′) as

(3.13) t′ =
1

σ
log(1 + σt), x′ =

x

(1 + σt)
1
σ

,

where σ = n(α− 1) + 2 and introduce the new scaled unknown v(t′, x′), ϕ(t′, x′) as

u(t, x) = (1 + σt)−
n
σ v

(
1

σ
log(1 + σt),

x

(1 + σt)
1
σ

)
,

ψ(t, x) = (1 + σt)−
n
σϕ

(
1

σ
log(1 + σt),

x

(1 + σt)
1
σ

)
,

or one may write as

v(t′, x′) = ent
′
u

(
1

σ
(eσt

′ − 1), x′et
′
)
,

ϕ(t′, x′) = ent
′
ψ

(
1

σ
(eσt

′ − 1), x′et
′
)
.

The resulting scaling equation of (v, ϕ) follows by setting κ = n+ 2− σ = n(2− α),

(3.14)


∂t′v − divx′(∇x′vα + x′v − e−κt′v∇x′ϕ) = 0, t′ > 0 , x′ ∈ Rn,

−e−2t′∆x′ϕ+ ϕ = v, t′ > 0 , x′ ∈ Rn,

v(0, x′) = u0(x
′) ≥ 0, x′ ∈ Rn.
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In this case, the vanishing exponent as before can be found as α = 2 by

0 = σ − n− 2 = n(α− 2)

and thus the sub-critical case is corresponding to α < 2. Hereafter we analyze the above
rescaled equation (3.14) to see the asymptotic behavior of the solution. We slightly change
the outlook of the solution as follows:

The existence of the weak solution of (3.14) may be proven by a similar way to the
original equation. Indeed, the scaling does not change any analytical feature of (3.1)
except the weighted restriction such as v ∈ C((0, T ) ;Lα ∩ L1

a(Rn)) for a ≥ 2. Similar to
the original system, we consider the approximated system by the parabolic regularization:

(3.15)


∂t′v − divx′(∇x′(v + ε)α + x′v − e−κt′v∇x′ϕ) = 0, t′ > 0 , x′ ∈ Rn,

−e−2t′∆x′ϕ+ ϕ = v, t′ > 0 , x′ ∈ Rn,

v(0, x′) = u0(x
′) ≥ 0, x′ ∈ Rn.

Namely, we again consider the nonnegative weak solution v(t′, x′) as before. Note that for
the construction of the weak solution, we need to use the diagonal argument obtaining
the weak solution (u, ψ) and (v, ϕ) simultaneously, since we do not know the uniqueness
of the weak solution.

2.2. Rescaled uniform bounds. The following estimate is a direct consequence of
the above a priori bound of the rescaled solution.

Proposition 3.7. Let 1 < α ≤ 2− 2
n
and (v(t), ϕ(t)) be a weak solution of (3.14) for

the initial data u0 ∈ L1
2(Rn) ∩ L∞(Rn). Assume that

(3.16) ∥u0∥1−γ
1 W (0)

γ−α+1
α < C∥En∥−1

L
n

n−2
w

for 1 < α ≤ 2− 2
n
and γ + 1 = α

α−1
n−2
n
, where En is the fundamental solution to −∆+ 1

in Rn, and C > 0 is the constant in Proposition 3.2. Then

(1) we have
∥v(t)∥q ≤ C

for all 1 ≤ q ≤ ∞.
(2) for all n

n−1
< r ≤ ∞,

∥∇ϕ(t)∥r ≤ Cet.

Once we obtain the above uniform bound for the rescaled solution, we can immediately
obtain the time decay estimate for the solution of the original equation.

(3.17)

∫
Rn

vq(t′, x′) dx′ =

∫
Rn

en(q−1)t′uq(t, x) dx = (1 + σt)
n
σ
(q−1)

∫
Rn

uq(t, x) dx

in the original variables (t, x). Hence we obtain the following decay estimate for the
original solution as the corollary of Proposition 3.7.

Proposition 3.8 (Ogawa [39], Sugiyama [48]). Let u0 ∈ L1
2(Rn) ∩ L∞(Rn) and let

(u(t), ψ(t)) be a weak solution of (3.1). If 1 < α ≤ 2 − 2
n
with small initial data (3.16),

we have
∥u(t)∥q ≤ C(1 + σt)−

n
σ
(1− 1

q
)

for all 1 ≤ q ≤ ∞.
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2.3. The moment bounds. The last part of this section, we show the second mo-
ment of the weak solution remains bounded for 0 ≤ t ≤ T .

Proposition 3.9. Let u0 ∈ L1(Rn) ∩ Lα(Rn) with |x|2u0 ∈ L1(Rn). Then the weak
solution (v, ϕ) of (3.14) satisfies

(3.18)

∫
Rn

|x′|2v(t′) dx′ ≤ e−nt′
∫
Rn

|x′|2u0 dx′ +
2(n− 2)

n
Ws(0),

where

Ws(t
′) =

1

α− 1

∫
Rn

vα(t′) dx′ +
1

2

∫
Rn

|x′|2v(t′) dx′ − 1

2

∫
Rn

e−κt′v(t′)ϕ(t′) dx′.

Namely, |x′|2v(t′) ∈ L1(Rn) for almost all t′. In addition, if we assume that u0 ∈ L1
a(Rn)

with a ≥ 2, then we have

(3.19)

∫
Rn

|x′|av(t′) dx′ ≤ e−at′
∫
Rn

|x′|au0 dx′ + C.

Proof of Proposition 3.9. We only give the formal proof. It can be justified
some appropriate cut-off and approximation procedure. To show (3.18) we test |x′|2 to
the equation and we see
(3.20)
d

dt′

∫
Rn

|x′|2v(t′) dx′ = 2n∥v(t′)∥αα − 2

∫
Rn

|x′|2v(t′) dx′ + 2e−κt′
∫
Rn

(
x′v(t′) · ∇ϕ(t′)

)
dx′.

We invoke the Pokhozaev identity for the second equation. We multiply the elliptic part
of the system by the generator of the dilation x · ∇ψ and integrate it by parts. Then it
follows ∫

Rn

(
x′v(t′) · ∇ϕ(t′)

)
dx′ = e−2t′

(
1− n

2

)∫
Rn

|∇ϕ(t′)|2 dx′ − n

2

∫
Rn

|ϕ(t′)|2 dx′

=

(
1− n

2

)∫
Rn

v(t′)ϕ(t′) dx′ − ∥ϕ(t′)∥22.
(3.21)

Combining (3.20) and (3.21), we obtain

d

dt′

∫
Rn

|x′|2v(t′) dx′ + n

∫
Rn

|x′|2v(t′) dx′

= 2n∥v(t′)∥αα + (n− 2)

∫
Rn

|x′|2v(t′) dx′ + (2− n)e−κt′
∫
Rn

v(t′)ϕ(t′) dx′ − 2e−κt′∥ϕ(t′)∥22

≤ 2(n− 2)Ws(t
′) + 2n

(
α− 2 + 2

n

α− 1

)
∥v(t′)∥αα − 2e−κt′∥ϕ(t′)∥22.

(3.22)

Thus under the condition α ≤ 2− 2
n
, we see that∫

Rn

|x′|2v(t′) dx′ ≤ e−nt′
∫
Rn

|x′|2u0 dx′ +
2(n− 2)

n
Ws(0)(1− e−nt′).
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For further weighted estimate, we modify (3.20) to have

(3.23)
d

dt′

∫
Rn

|x′|av(t′) dx′ + a

∫
Rn

|x′|av(t′) dx′

= a(n− 2 + a)

∫
Rn

|x′|a−2vα(t′) dx′ + ae−κt′
∫
Rn

|x′|a−2x′v(t′) · ∇ϕ(t′) dx′.

It follows that

d

dt′

[
eat

′
∫
Rn

|x′|av(t′) dx′
]

≤ a(n− 2 + a)eat
′∥v(t′)∥α−1

∞

∫
Rn

|x′|a−2v(t′) dx′ + ae−(κ−a)t′∥∇ϕ∥∞
∫
Rn

|x′|a−1v dx′.

By the uniform boundedness for ∥v(t′)∥∞, et
′∥∇ϕ∥∞ (Proposition 3.7) and the lower

moment bounds implies that

(3.24)

∫
Rn

|x′|av(t′) dx′ ≤ e−at′
∫
Rn

|x′|av(0) dx′ + C.

□

Proof of Theorem 3.6. By Proposition 3.9, we obtain yv ∈ L∞(0,∞ ;La(Rn))
and by Proposition 3.7, we have e−κt′v∇ϕ ∈ L∞((0,∞)×Rn). Since a > n, we can apply
Theorem 2.4 and we obtain the uniform Hölder continuity of v in (1,∞)× Rn. □

3. The asymptotic profile

In this section, we show the asymptotic convergence of the weak solution u(t, x) of
(3.1) to the Barenblatt-Pattle solution by using the uniform Hölder estimate.

To show the convergence rate, we consider as we mentioned in the introduction that
the self-similar transform of the system and the weak solution of the rescaled system:

(3.25)


∂t′v − divx′(∇x′vα + x′v − e−κt′v∇x′ϕ) = 0, t′ > 0 , x′ ∈ Rn,

−e−2t′∆x′ϕ+ ϕ = v, t′ > 0 , x′ ∈ Rn,

v(0, x′) = u0(x
′) ≥ 0, x′ ∈ Rn,

where κ = n+ 2− σ = n(2− α).
In what follows, we only treat the scaled system (3.25) and hence we use a simpler

notations as t′ → t and x′ → x if it does not cause any confusion.
Applying the method of the Fokker-Planck equation due to Carrillo-Toscani [15], we

compute the time derivative of the free energy functional: For a weak solution (v, ϕ) of
(3.25), we let

H(v(t)) ≡ 1

α− 1

∫
Rn

vα(t) dx+
1

2

∫
Rn

|x|2v(t) dx,

J(v(t)) ≡
∫
Rn

v(t)

∣∣∣∣∇( α

α− 1
vα−1(t) +

|x|2

2

)∣∣∣∣2 dx,
I(v(t)) ≡

∫
Rn

v(t)

∣∣∣∣∇( α

α− 1
vα−1(t) +

|x|2

2
− e−κtϕ

)∣∣∣∣2 dx.
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The key idea to show the asymptotic behavior is to consider the decay of the dissipative
flux term I(v) in t. We firstly observe that the entropy functional has a certain relation:

Proposition 3.10. For a weak solution v and ϕ of (3.14), we have

(3.26) H(v(t)) +
1

2
(e−(κ+2)t∥∇ϕ(t)∥22 + e−κt∥ϕ(t)∥22)

+

∫ t

s

(
κ− 2

2
e−(κ+2)τ∥∇ϕ(τ)∥22 +

κ

2
e−κτ∥ϕ(τ)∥22 + J(v(τ))

)
dτ

≤ H(v(s)) +
1

2
(e−(κ+2)s∥∇ϕ(s)∥22 + e−κs∥ϕ(s)∥22) +

∫ t

s

e−2κτ dτ

∫
Rn

v|∇ϕ(τ)|2 dx.

In particular, for 1 < α ≤ 2 − 2
n
, we have that H(v(t)) is uniformly bounded in t under

the smallness condition (3.16) and

(3.27) H(v(t)) ≤ H(u0) +
1

2

∫
Rn

ϕ(0)v(0) dx+ C sup
τ>0

[
e−2τ∥v(τ)∥∞∥∇ϕ(τ)∥22

]
for any t > 0.

Remark 3.11. The restriction of the exponent α ≤ 2− 2
n
follows from the restriction

on κ ≥ 2 in view of the integrability of the third term of the right-hand side of the above
inequality.

Proof of Proposition 3.10. The equation (3.14) can be rewritten as the following
form:

∂tv − div

(
v∇
(

α

α− 1
vα−1(t) +

|x|2

2
− e−κtϕ

))
= 0.

Testing α
α−1

vα−1(t) + |x|2
2

+ e−κtϕ, we see that

∂tH(v(t)) + e−κt

∫
Rn

ϕ∂tv dx+ J(v(t)) = e−2κt

∫
Rn

v|∇ϕ|2 dx.

Since

e−κt

∫
Rn

ϕ∂tv dx = e−κt

∫
Rn

ϕ∂t(−e−2t∆ϕ+ ϕ) dx

= e−κt

∫
Rn

∇ϕ · ∇(∂t(e
−2tϕ)) dx+ e−κt

∫
Rn

ϕ∂tϕ dx

=
1

2
∂t(e

−(κ+2)t∥∇ϕ∥22 + e−κt∥ϕ∥22) +
κ− 2

2
e−(κ+2)t∥∇ϕ∥22 +

κ

2
e−κt∥ϕ∥22,

we obtain

(3.28) ∂t

(
H(v(t)) +

1

2
(e−(κ+2)t∥∇ϕ∥22 + e−κt∥ϕ∥22)

)
+
κ− 2

2
e−(κ+2)t∥∇ϕ∥22 +

κ

2
e−κt∥ϕ∥22 + J(v(t)) = e−2κt

∫
Rn

v|∇ϕ|2 dx.
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Integrating (3.28) over [s, t] we obtain (3.26). Under the condition 1 < α ≤ 2 − 2
n
, we

have κ ≥ 2 and by Proposition 3.7 e−2t∥v(t)∥∞∥∇ϕ(t)∥22 ≤ C. Therefore it follows

H(v(t)) ≤ H(v(0)) +
1

2

[
∥∇ϕ(0)∥22 + ∥ϕ(0)∥22

]
+

1

κ− 1
sup
t>0

(
e−2t∥v(t)∥∞∥∇ϕ(t)∥22

)
≤ H(v(0)) +

1

2

∫
Rn

v(0)ϕ(0) dx+ C sup
τ>0

(
e−2τ∥v(τ)∥∞∥∇ϕ(τ)∥22

)
for all t > 0. □

For a solution v and ϕ of (3.14), we let

K(x, v(t), ϕ(t)) := ∇
(

α

α− 1
vα−1 +

|x|2

2
− e−κtϕ

)
.

It is not so difficult to see that the asymptotic profile is given by J(v(t)) → 0 from
the above inequality. However to obtain the convergence rate for a weak solution in the
weighted class L1

2(Rn) ∩ L∞(Rn), we derive that I(v(t)) is exponentially decaying. To
this end, we observe the time derivative of the functional I(v(t)). We assume that κ > 0
namely α < 2.

Following Carrillo-Toscani [15], we formally have

d

dt
I(v(t)) = −2

∫
Rn

v|K(x, v, ϕ)|2 dx− 2(α− 1)

∫
Rn

vα| divK(x, v, ϕ)|2 dx

− 2

∫
Rn

vα|∇K(x, v, ϕ)|2 dx+ 2e−κt

∫
Rn

vKi(x, v, ϕ)Kj(x, v, ϕ)(∂i∂jϕ) dx

+ 2e−κt

∫
Rn

div(vK(x, v, ϕ))∂tϕ dx− 2κe−κt

∫
Rn

vK(x, v, ϕ)∇ϕ dx.

(3.29)

Since the weak solution does not have enough regularity, the above identity is not nec-
essarily valid and the actual estimate should be obtained in the form of the integral
inequality. This is justified by an appropriate approximation: Let (v, ϕ) be a solution of
the regularized system:

(3.30)


∂tv − div((v + ε)Kε(x, v, ϕ)) = −ε(e−κ−2t(v − ϕ) + n), t > 0, x ∈ Rn,

−e−2t∆ϕ+ ϕ = v, t > 0, x ∈ Rn,

v(0, x) = u0(x), x ∈ Rn,

where

Kε(x, v(t), ϕ(t)) := ∇
(

α

α− 1
(v + ε)α−1 +

|x|2

2
− e−κtϕ

)
.

Note that the above system (3.30) is equivalent to (3.15). The existence of the smooth
and sufficiently fast decaying solution at |x| → ∞ of (3.30) is obtained in a similar manner
in Sugiyama [46].

Proposition 3.12. Let ζ be a smooth cut-off function such that ζ = 1 in BR and
whose derivatives are supported in B2R \ BR. For a solution v and ϕ of (3.30) belonging
to L1, we let

Iε(v(t)) :=

∫
Rn

v(t) |Kε(x, v, ϕ)|2 ζ2 dx.
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Then we have
d

dt
Iε(v(t)) ≤ −2

∫
Rn

(v + ε)|Kε(x, v, ϕ)|2ζ2 dx

− 2(α− 1)

∫
Rn

(v + ε)α| divKε(x, v, ϕ)|2ζ2 dx

− 2

∫
Rn

(v + ε)α|∇Kε(x, v, ϕ)|2ζ2 dx

+ 2e−κt

∫
Rn

v(D2ϕKε(x, t, ϕ) ·Kε(x, t, ϕ))ζ
2 dx

+ 2e−(κ−2)t

∫
Rn

|vKε(x, v, ϕ)|2ζ2 dx− 2κe−κt

∫
Rn

vKε(x, v, ϕ)∇ϕζ2 dx

+ EI(x, v, ϕ, ε,∇ζ),

(3.31)

where EI(x, v, ϕ, ε,∇ζ) denotes the error term and it will be vanishing when we take the
limit R → ∞ and ε→ 0.

The derivation and rigorous treatment of (3.31) is given in Appendix of [40]. We
proceed to the following.

Proposition 3.13. Let (v, ϕ) be a weak solution of (3.14). Then under the condition
1 < α ≤ 2 − 2

n
and the solution v has uniform estimate supt>0 ∥v(t)∥∞ ≤ C0 for some

constant, there exists T0 > 0 such that for any T0 < t,

(3.32) I(v(t)) +

∫ t

T0

I(v(τ)) dτ ≤ I(v(T0)),

in particular, there exist constants ν, C > 0 such that

I(v(t)) ≤ Ce−νt

for t ≥ T0.

To obtain the above proposition, we need the following two ingredients. First one is the
Sobolev type inequality in the critical type originally due to Brezis-Gallouet [8]. This is the
generalized version obtained in Ogawa-Taniuchi [42] and Kozono-Ogawa-Taniuchi [28].

Proposition 3.14 (Kozono-Ogawa-Taniuchi [28], Ogawa-Taniuchi [42]). There exists
a constant C depending only on n such that for f ∈ L2(Rn) ∩ Cγ(Rn), the following
inequality holds:

(3.33) ∥f∥∞ ≤ C(1 + ∥f∥BMO log(e+ ∥f∥2 + ∥f∥Cγ )),

where

BMO :=

{
f ∈ L1

loc(Rn) : ∥f∥BMO := sup
x∈Rn, R>0

1

|BR(x)|

∫
BR(x)

|f − (f)BR(x)| dx <∞
}
.

Proof of Proposition 3.13. To avoid the complexity of the notation, we treat the
estimate only for the essential parts in rather formal way, namely dropping the parameter
ε and cut-off function ζ. The rigorous procedure requires that all those estimates are
proceeded before passing to the limit R → ∞ and ε→ 0 and the rigorous treatment can
be found in [40]. Observing the estimate (3.31), we need to estimate the last four terms
in the right-hand side. The fourth error term EI(x, v, ϕ, ε,∇ζ) is handled in Appendix A
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in [40] since it does not give any effect for the estimation of the other terms. Firstly, the
sixth term of the right-hand side of (3.31) can be estimated as follows:

−2κe−κt

∫
Rn

vK(x, v, ϕ)∇ϕ dx ≤ 2κe−κt∥∇ϕ∥∞
(∫

Rn

v dx

) 1
2
(∫

Rn

v|K(x, v, ϕ)|2 dx
) 1

2

≤ 2κδ−1e−2κt∥∇ϕ∥2∞∥v∥1 +
δ

2

∫
Rn

v|K(x, v, ϕ)|2 dx,

where δ > 0 is a small parameter. Hence from Proposition 3.12, we obtain that

d

dt
I(v(t)) ≤ −(2− δ)

∫
Rn

v|K(x, v, ϕ)|2 dx− 2(α− 1)

∫
Rn

vα| divK(x, v, ϕ)|2 dx

− 2

∫
Rn

vα|∇K(x, v, ϕ)|2 dx+ 2e−(κ−2)t

∫
Rn

|vK(x, v, ϕ)|2 dx

+ 2e−κt

∫
Rn

v(D2ϕK(x, t, ϕ) ·K(x, t, ϕ)) dx

+ Cδ−1e−2(κ−1)t∥v(t)∥1 sup
t
(e−2t∥∇ϕ(t)∥22).

(3.34)

We now tern into how to treat the following term:

e−κt

∫
Rn

v(D2ϕK(x, t, ϕ) ·K(x, t, ϕ)) dx.

Applying the logarithmic interpolation inequality of Brezis-Gallouet type (3.33), we see

∥D2ϕ(t)∥∞ ≤ C
(
1 + ∥D2ϕ(t)∥BMO log

(
e+ ∥D2ϕ(t)∥2 + ∥D2ϕ(t)∥Cγ

))
.

By the Calderon-Zygmund inequality, we have

∥D2ϕ∥2 ≤ C∥∆ϕ∥2 ≤ Ce2t(∥v∥2 + ∥ϕ∥2) ≤ Ce2t∥v∥2.

By the Schauder estimate, we obtain

∥D2ϕ∥Cγ ≤ Ce2t(∥v∥Cγ + ∥ϕ∥Cγ ) ≤ Ce2t.

Finally, by the Calderon-Zygmund inequality again, we have

(3.35) ∥D2ϕ∥BMO ≤ C∥∆ϕ∥BMO ≤ C∥∆(−e−2t∆+ 1)−1v∥BMO.

We notice that the corresponding Fourier multiplier of the operator appearing the right-
hand side of (3.35) is given by

|ξ|2

e−2t|ξ|2 + 1
=
e2t|ξ|2−γ

|ξ|2 + e2t
|ξ|γ = e(2−γ)t e

γt|ξ|2−γ

|ξ|2 + e2t
|ξ|γ

and the multiplier satisfies the condition so that the operator e(γ−2)t|∇|2−γ(−e−2t∆+1)−1

is bounded in BMO. Therefore

∥D2ϕ∥BMO ≤ Ce(2−γ)t∥|∇|γv∥BMO.
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From the uniform Hölder estimate Proposition 3.6, ∥|∇|γv∥BMO is bounded uniformly in
t. This enable us to proceed the estimate as

2e−κt

∫
Rn

vKi(x, v, ϕ)Kj(x, v, ϕ)∂i∂jϕ dx ≤ 2e−κt∥D2ϕ(t)∥∞
∫
Rn

v|K(x, v, ϕ)|2 dx

≤ Ce−(κ−2+γ′)t

∫
Rn

v|K(x, v, ϕ)|2 dx
(3.36)

for some γ′ > 0. Combining (3.34) and (3.36), we obtain that if κ = 2 i.e. α = 2− 2
n
,

(3.37)
d

dt
I(v(t)) ≤ −(2− ε)I(v(t))

+ C(1 + t) sup
t

∥v(t)∥∞I(v(t)) + Cε−1e−2t∥v(t)∥2∞ sup
t
(e−2t∥∇ϕ(t)∥22).

Note that at this stage, the inequality (3.37) does not include the higher order terms so
that it is possible to justify it for the weak solution. Since 2(κ− 2) = 0 when α = 2− 2

n
,

we can choose ν, η > 0 such that for some large T0 > 0, which depends on C, for any
t ≥ T0,

(3.38)
d

dt
(eνtI(v(t)) ≤ Ce−ηt.

Immediately we obtain that

I(v(t)) ≤ e−νt

(
I(v(T0)) + C

∫ ∞

T0

eητ dτ

)
.

Since T0 is only depending on C we may conclude that I(v(t)) ≤ C(T0) for 0 ≤ t ≤ T0
and this concludes the desired estimate. □

The proof of the asymptotic profile in Theorem 3.4 completes after proving the con-
vergence of the rescaled solution and rescaling.

Proposition 3.15. Let 1 < α ≤ 2− 2
n
and let (v, ϕ) be a weak solution to (3.14). If

the initial data satisfies the condition (3.5), then we have for some ν > 0 that

∥v(t)− V ∥1 ≤ Ce−νt

where

V (x) =

(
A− α− 1

2α
|x|2
) 1

α−1

+

and the constant A is chosen as ∥V ∥1 = ∥u0∥1.

Proof of Proposition 3.15. Due to the result from Proposition 3.13, we immedi-
ately obtain that

(3.39) lim
t→∞

I(v(t)) = 0

On the other hand, since by Proposition 3.7,

J(v(t)) ≤ 2I(v(t)) + 2e−2κt

∫
Rn

v(t)|∇ϕ(t)|2 dx

≤ 2I(v(t)) + 2e−2κt∥v(t)∥∞∥∇ϕ(t)∥22
≤ 2I(u0)e

−νt + 2Ce−2(κ−1)t.
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We conclude from (3.26) and Proposition 3.7 that for any s < t,∣∣∣H(v(t))−H(v(s))
∣∣∣

≤ |e−κt(e−2t∥∇ϕ(t)∥22 + ∥ϕ(t)∥22)− e−κs(e−2s∥∇ϕ(s)∥22 + ∥ϕ(s)∥22)|

+

∫ t

s

(
κ− 2

2
e−(κ+2)τ∥∇ϕ(τ)∥22 +

κ

2
e−κτ∥ϕ(τ)∥22 + J(v(τ))

)
dτ

+

∫ t

s

e−2κτ

(∫
Rn

v(τ)|∇ϕ(τ)|2 dx
)
dτ

≤ C(κ)e−κs sup
τ>0

(
e−2τ∥∇ϕ(τ)∥22 + ∥ϕ(τ)∥22

)
+ 2I(v(u0))e

−νs + 2C(κ)e−2(κ−1)s

+ e−2(κ−1)s sup
τ>0

(
e−2τ∥v(τ)∥∞∥∇ϕ(τ)∥22

)
≤ Ce−νs → 0, as s, t→ ∞

(3.40)

and this shows that {H(v(tn))}n is the Cauchy sequence in tn → ∞. Besides the moment
bound (3.19) in Proposition 3.9, |x|av ∈ L1(Rn) for some a > 2. Therefore by the
compactness W 1,1(Rn) ∩ L1

a(Rn) ⊂ L1(Rn) ∩ L1
2(Rn), we have a subsequence v(tn) such

that it converges strongly to V ∈ Lα(Rn) ∩ L1
2(Rn). The similar argument found in

Carrillo-Toscani [15, Theorem 3.1] works for our case and we see that there exists a limit
function V in L1

2(Rn) such that

v(tn) → V , tn → ∞
in L1(Rn). It turns out that the limit function is also non-negative and bounded. While
by (3.39), the moment bound Proposition 3.9 and the natural regularity of the weak
solution, we see that

J(v(t)) → J(V ) =

∫
Rn

V

∣∣∣∣ α

α− 1
∇V α−1 + x

∣∣∣∣2 dx = 0

and we obtain either V = 0 or ∇V α−1 = −α−1
α

almost everywhere. This concludes by
recalling M = ∥u0∥1,

V (x) =

[
A− α− 1

α
|x|2
] 1

α−1

+

,

where A is chosen such that the L1 norm of V (x) is normalized as 1. Again the estimate
(3.26) in Proposition 3.10 and (3.40) gives

(3.41) |H(v(t))−H(V )| ≤ Ce−νt

and that desired estimate follows from the argument in Carrillo-Toscani [15]. Namely we
see firstly that

(3.42)

∫
{v<V }

|v(t)− V | dx ≤
(
1

α
|H(χBv(t))−H(V )|

) 1
2
(∫

B

V (x)
2
n dx

) 1
2

by the special structure of the Barenblatt-Pattle solution, where B = suppV = {|x| ≤
2αA
α−1

} and χB is the characteristic function on B. While by M = ∥V ∥1 = ∥v(t)∥1 and
V ≥ 0, we see

(3.43)

∫
{v≥V }

|v(t)− V | dx =

∫
{v<V }

|V − v(t)| dx =

∫
{v<V }

|v(t)− V | dx.
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We note that over Bc, V is vanishing and by Carrillo-Toscani [15, Lemma 4.4]

1

α− 1

∫
|x|2>C

vα(t) dx+
1

2

∫
|x|2>C

(|x|2 −D)v(t) dx ≤ |H(v(t))−H(V )|,

D

∫
|x|2>C

v(t) dx ≤ Ce−γt.

(3.44)

Combining (3.42), (3.43) and (3.44) with (3.40) we conclude that

∥v(t)− V ∥1 ≤ C−ν′t

for some ν ′ > 0. □
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CHAPTER 4

Hölder continuity for solutions of the p-harmonic heat flow

1. The p-harmonic heat flow

We consider the following initial value problem of the p-harmonic heat flow:

(4.1)

{
∂tu− div(|∇u|p−2∇u) = div f, t > 0, x ∈ Rn,

u(0, x) = u0(x), x ∈ Rn,

where p > 2 is a constant, u : (0,∞) × Rn → R is unknown, f : (0,∞) × Rn → Rn and
u0 : Rn → R are given external and initial data.

It is well-known that a classical solution of (4.1) does not generally exist. In fact,
when f ≡ 0, for σ = n(p− 2) + p the Barenblatt solution

U(t, x) := (1 + σt)−
n
σ

{
1− p− 2

p

(
|x|

(1 + σt)
1
σ

) p
p−1
}1+ 1

p−2

+

satisfies (4.1) in the sense of distribution. Since the Barenblatt solution is not twice
differentiable, a classical solution of (4.1) does not generally exist. Hence we introduce
the notion of weak solutions.

Definition 4.1. For u0 ∈ L1(Rn) and f ∈ L1((0,∞)×Rn), we call u a weak solution
of (4.1) if there exists T > 0 such that

(1) u ∈ L∞(0, T ;L2(Rn)) with ∇u ∈ Lp(0, T ;Lp(Rn)); and
(2) u satisfies (4.1) in the sense of distribution, namely, for all φ ∈ C1(0, T ;C1

0(Rn)) and
for almost all 0 < t < T ,∫
Rn

u(t)φ(t) dx−
∫ T

0

∫
Rn

u∂tφdtdx+

∫ T

0

∫
Rn

|∇u|p−2∇u · ∇φdtdx

=

∫
Rn

u0φ(0) dx−
∫ T

0

∫
Rn

f · ∇φdtdx.

For the existence of a weak solution is shown by Browder [9], Ladyženskaja-Solonnikov-

Ural’ceva [29] (cf. Ôtani [44]). In this chapter, we study the Hölder continuity of ∇u,
particularly, we show a relationship between the Hölder continuity of ∇u and the regu-
larity of the external force f .

The Hölder continuity of ∇u was firstly shown by DiBenedetto-Friedman [19, 20] and
Wiegner [51] when f ≡ 0. Misawa [33] showed the Hölder continuity of ∇u if f is locally
Hölder continuous with respect to t and x. In this chapter, we give a weaker condition of
the external force f for the Hölder continuity of ∇u than the condition given by Misawa.

This chapter is based on the paper [36].
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Theorem 4.2. Let u be a weak solution of (4.1) satisfying ∇u ∈ L∞((0,∞) × Rn).
Assume that for some constants K > 0 and γ0 > n+2− p

p−1
, the external force f satisfies

(4.2)

∫∫
QR(t0,x0)

|∇f |
p

p−1 dtdx ≤ KRγ0

for all (t0, x0) ∈ (0,∞) × Rn and 0 < R < 1 satisfying QR(t0, x0) ⊂ (0,∞) × Rn.
Then ∇u is Hölder continuous with exponent γ > 0 depending only on n, p, γ0. And for
ε > 0, there exists a constant C > 0 depending only on n, p, γ0, K, ε such that for all
(t, x), (s, y) ∈ (ε,∞)× Rn,

|∇u(t, x)−∇u(s, y)| ≤ C(|t− s|
γ
2 + |x− y|γ).

Remark 4.3. The assumption (4.2) holds for ∇f ∈ Lr
loc(0,∞ ;Lq

loc(Rn)) when 2
r
+ n

q
<

1, 1 ≤ r, q ≤ ∞ and n ≥ 2. In particular, if f is Hölder continuous in (0,∞)× Rn, then
∇f ∈ Lr

loc(0,∞ ;Lq
loc(Rn)) for some r, q ≥ 1 with 2

r
+ n

q
< 1.

To prove Theorem 4.2, we show the decay estimate of the mean oscillation of ∇u
by the perturbation argument. It is well-known that we obtain the Hölder continuity
by the decay estimate of the mean oscillation (cf. Campanato [14]). Considering the
time dependent mean oscillation of f and using the Poincare inequality, we treat f as a
perturbation under the condition (4.2). If the external force f is locally Hölder continuous
with respect to t and x, then we have (4.2) hence our results cover the results of Misawa.

2. Proof of the Hölder continuity

We show the decay estimate of the mean oscillation of ∇u at (t0, x0). By the scaling
argument, we only consider (t0, x0) ∈ (1,∞) × Rn and we omit to denote the center of
parabolic cylinders (t0, x0).

For R < 1, we consider the following reference equation:

(4.3)

{
∂tv − div(|∇v|p−2∇v) = 0, (t, x) ∈ QR,

v = u, (t, x) ∈ ∂pQR.

For the existence of a solution of (4.3), we refer to Ladyženskaja-Solonnikov-Ural’ceva [29,
Theorem 6.7 in p.466]

Lemma 4.4. Let λ = λ(t) : IR → Rn. Then there exists a constant C > 0 depending
only on n, p such that∫

BR

(v(t0)− u(t0))
2 dx+

∫∫
QR

|∇v −∇u|p dtdx ≤ C

∫∫
QR

|f − λ(t)|
p

p−1 dtdx.

Proof of Lemma 4.4. Subtracting (4.1) from (4.3), multiplying (v − u) and inte-
grating in QR, we obtain

1

2

∫∫
QR

∂t(v − u)2 dtdx+

∫∫
QR

(
(|∇v|p−2∇v − |∇u|p−2∇u) · (∇v −∇u)

)
dtdx

=

∫∫
QR

(
(f − λ(t)) · (∇v −∇u)

)
dtdx.
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Using Lemma B.1 and the Hölder inequality, we have

1

2

∫∫
QR

∂t(v − u)2 dtdx+ C0(n, p)

∫∫
QR

|∇v −∇u|p dtdx

≤
∫∫

QR

(
(f − λ(t)) · (∇v −∇u)

)
dtdx

≤
(∫∫

QR

|f − λ(t)|
p

p−1 dtdx

)1− 1
p
(∫∫

QR

|∇v −∇u|p dtdx
) 1

p

≤ C0(n, p)

2

∫∫
QR

|∇v −∇u|p dtdx+ C1(n, p)

∫∫
QR

|f − λ(t)|
p

p−1 dtdx.

□

The following local maximum principle for (4.3) is given by DiBenedetto [18]

Lemma 4.5 (DiBenedetto [18, Theorem 5.1 in p.238]). There exists a constant C > 0
depending only on n, p such that

sup
QR

2

|∇v| ≤ C

(
1

|QR|

∫∫
QR

|∇v|p dtdx
) 1

2

.

Using Lemma 4.5, we obtain the following lemma:

Lemma 4.6. Let λ = λ(t) : IR → Rn. Then there exists a constant C > 0 depending
only on n, p such that

(4.4) sup
QR

2

|∇v| ≤ C

{(
1

|QR|

∫∫
QR

|f − λ(t)|
p

p−1 dtdx

) 1
2

+M
p
2

}
.

In particular, |∇v| is bounded on QR
2
.

Proof of Lemma 4.6. By Lemma 4.4 and |∇u| ≤M , we have∫∫
QR

|∇v|p dtdx ≤ C(p)

(∫∫
QR

|∇v −∇u|p dtdx+
∫∫

QR

|∇u|p dtdx
)

≤ C(p)

(∫∫
QR

|f − λ(t)|
p

p−1 dtdx+ |QR|Mp

)
.

Using Lemma 4.5, we obtain (4.4). We let λ(t) := (f(t))BR
, then by the Poincare inequal-

ity and (4.2), we have

1

|QR|

∫∫
QR

|f − λ(t)|
p

p−1 dtdx ≤ C(n, p)R−n−2+ p
p−1

∫∫
QR

|∇f |
p

p−1 dtdx

≤ C(n, p)KRγ0−n−2+ p
p−1 .

Since γ0 > n+ 2− p
p−1

, we find that |∇v| is bounded on QR
2
. □

The following Hölder estimates of ∇v is shown by DiBenedetto [18].
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Lemma 4.7 (DiBenedetto [18, Theorem 1.1’ in p.256]). For 0 < δ < 1 and R < 1,
there exist constants α0 > 0 and C > 0 depending only on n, p such that

osc
QR

2

(∇v) ≤ C∥∇v∥L∞(Q
R1−δ

2

)

R +Rmax{1, ∥∇v∥
p−2
2

L∞(Q
R1−δ

2

)}

distp(QR
2
, ∂pQR1−δ

2

)


α0

.

Using Lemma 4.7 we show the following lemma:

Lemma 4.8. For 0 < δ < 1, there exists a constant C > 0 depending only on n, p such
that,

osc
QR

2

(∇v) ≤ 8Rδ∥∇v∥L∞(Q
R1−δ

2

) + C∥∇v∥L∞(Q
R1−δ

2

)

(
1 + max{1, ∥∇v∥

p−2
2

L∞(Q
R1−δ

2

)}
)α0

Rδα0 .

Proof of Lemma 4.8. Either if Rδ ≥ 1
4
, then

osc
QR

2

(∇v) ≤ 2∥∇v∥L∞(QR
2
) ≤ 8Rδ∥∇v∥L∞(Q

R1−δ
2

).

Otherwise, if 0 < Rδ < 1
4
, then

dist(QR
2
, ∂pQR1−δ

2

) = min

{((R1−δ

2

)2
−
(R
2

)2) 1
2

,

(
R1−δ

2
− R

2

)}
=
R1−δ

2
(1−Rδ) ≥ 3

8
R1−δ.

Therefore, by Lemma 4.7, we obtain

osc
QR

2

(∇v) ≤ C(p, n)∥∇v∥L∞(Q
R1−δ

2

)

(
1 + max{1, ∥∇v∥

p−2
2

L∞(Q
R1−δ

2

)}
)α0

Rδα0 .

□

Proof of Theorem 4.2. Fix 0 < ρ < R < 1. Then
(4.5)∫∫

Qρ

|∇u−(∇u)Qρ|p dtdx ≤ C(p)

(∫∫
Qρ

|∇u−∇v|p dtdx+
∫∫

Qρ

|∇v − (∇v)Qρ |p dtdx

)
.

First, we estimate
∫∫

Qρ
|∇v − (∇v)Qρ |p dtdx. Either if 0 < ρ ≤ R

2
, then by Lemma 4.8,∫∫

Qρ

|∇v − (∇v)Qρ|p dtdx

≤
∫∫

Qρ

osc(∇v)p dtdx

≤ C(n, p)∥∇v∥pL∞(Q
R1−δ

2

)R
n+2+pδ

+ C(n, p)∥∇v∥pL∞(Q
R1−δ

2

)

(
1 + max{1, ∥∇v∥

p−2
2

L∞(Q
R1−δ

2

)}
)pα0

Rn+2+pδα0 .
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Otherwise, if R
2
≤ ρ ≤ R, then∫∫

Qρ

|∇v − (∇v)Qρ |p dtdx ≤ 2n+2+p
( ρ
R

)n+2+p
∫∫

Qρ

|∇v − (∇v)Qρ|p dtdx.

Since ∫∫
Qρ

|∇v − (∇v)Qρ|p dtdx

≤ C(p)

∫∫
Qρ

|∇v − (∇v)QR
|p dtdx+ C(p)|Qρ||(∇v)Qρ − (∇v)QR

|p

≤ C(p)

∫∫
QR

|∇v − (∇v)QR
|p dtdx+ C(p)

∫∫
Qρ

|∇v − (∇v)QR
|p dtdx

≤ C(p)

∫∫
QR

|∇v − (∇v)QR
|p dtdx,

we obtain∫∫
Qρ

|∇v − (∇v)Qρ |p dtdx ≤ C(n, p)
( ρ
R

)n+2+p
∫∫

QR

|∇v − (∇v)QR
|p dtdx.

Using the inequality∫∫
QR

|∇v − (∇v)QR
|p dtdx

≤ C(n, p)

∫∫
QR

|∇v −∇u|p dtdx+ C(n, p)

∫∫
QR

|∇u− (∇u)QR
|p dtdx,

we have ∫∫
Qρ

|∇v − (∇v)Qρ |p dtdx

≤ C(n, p)

(
ρ

R

)n+2+p ∫∫
QR

|∇u− (∇u)QR
|p dtdx+ ∥∇v∥pL∞(Q

R1−δ
2

)R
n+2+pδ

+ C(n, p)∥∇v∥pL∞(Q
R1−δ

2

)

(
1 + max{1, ∥∇v∥

p−2
2

L∞(Q
R1−δ

2

)}
)pα0

Rn+2+pδα0

+ C(n, p)

∫∫
QR

|∇u−∇v|p dtdx.

We estimate
∫∫

QR
|∇v −∇u|p dtdx. By Lemma 4.4, we have for λ = λ(t) : IR → Rn,∫∫
QR

|∇u−∇v|p dtdx ≤ C(n, p)

∫∫
QR

|f − λ(t)|
p

p−1 dtdx.
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Therefore, by (4.5), we obtain∫∫
Qρ

|∇u− (∇u)Qρ |p dtdx ≤ C(n, p)
( ρ
R

)n+2+p
∫∫

QR

|∇u− (∇u)QR
|p dtdx

+ C(n, p)∥∇v∥pL∞(Q
R1−δ

2

)R
n+2+pδ

+ C(n, p)∥∇v∥pL∞(Q
R1−δ

2

)

(
1 + max{1, ∥∇v∥

p−2
2

L∞(Q
R1−δ

2

)}
)pα0

Rn+2+pδα0

+ C(n, p)

(( ρ
R

)n+2+p

+ 1

)∫∫
QR

|f − λ(t)|
p

p−1 dtdx.

We let λ(t) := (f(t))BR
, then by the Poincare inequality and (4.2), we have∫∫

QR

|f − λ(t)|
p

p−1 dtdx ≤ C(n, p)R
p

p−1

∫∫
QR

|∇f |
p

p−1 dtdx ≤ C(n, p)KRγ0+
p

p−1 .

Applying Lemma B.14 for ϕ(ρ) =
∫∫

Qρ
|∇u− (∇u)Qρ |p dtdx, we obtain∫∫

Qρ

|∇u− (∇u)Qρ |p dtdx ≤ Cρn+2+pnγ

for some γ > 0. Since γ0 +
p

p−1
> n+ 2, ∇u is Hölder continuous with exponent γ. □
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APPENDIX A

Harnack estimates for some nonlinear parabolic equation

1. Introduction and main result

We consider the following nonlinear parabolic equation:

(A.1)

{
∂tu−∆u+

u

ε
(|∇u|2 − 1) = 0, (t, x) ∈ (0,∞)× Rn,

u(0, x) = u0(x), x ∈ Rn,

where u(t, x) is the unknown function, u0(x) is a given initial data and ε > 0 is a small
parameter.

To compute the motion by mean curvature, Bence-Merriman-Osher [5] proposed a
numerical algorithm which is called B-M-O algorithm, based on a simple procedure using
a solution of heat equations. There are some mathematical justifications and extensions of
the B-M-O algorithm given by Evans [21], Barles-Georgelin [4], H. Ishii [25] and H. Ishii-
K. Ishii [26]. Considering the B-M-O algorithm, Goto-K. Ishii-Ogawa [24] introduced the
singular limiting problem (A.1) of the nonlinear parabolic equation. Moreover, Goto-
K. Ishii-Ogawa gave another proof of the convergence of the B-M-O algorithm and a
solution u of the limiting problem (A.1) satisfies the level set equation of the motion by
mean curvature:

(A.2) ∂tu− |∇u| div
(

∇u
|∇u|

)
= 0.

This problem (A.1) is similar to a singular limiting problem of the Allen-Cahn equation
and the behavior of the solution of limiting problem (A.1) might be singular as ε → 0.
In general, it is difficult to obtain the regularity of the solution of the limiting problem
(A.2). Besides, the regularity of the limiting problem (A.1) is related to a convergence of
the B-M-O algorithm. Hence, it is important to study the regularity of the solution of
(A.1) depending on the parameter ε > 0.

We note the existence of a solution of (A.1). Let Aε = ∆+ 1
ε
with a domain D(Aε) =

H2(Rn) and etAε is a semigroup generated by Aε on Rn.

Definition A.1. We call u = u(t, x) a mild solution of (A.1) if there exists T > 0
such that u satisfies the integral equation:

(A.3) u(t, x) = etAεu0(x)−
1

ε

∫ t

0

e(t−τ)Aεu(τ, x)|∇u(τ, x)|2 dτ

for all 0 < t < T .

The existence of the mild solution of (A.1) is as follows.

This chapter is taken from the paper [34].
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Proposition A.2. Let 1 < p, r ≤ ∞ be satisfying

1

p
+

1

r
<

1

n
,

1

p
+

2

r
≤ 1.

For any initial data u0 ∈ Lp(Rn) with ∇u0 ∈ Lr(Rn), we take T > 0 enough small such
that

0 < T 1−γ(∥u0∥Lp(Rn) + ∥∇u0∥2Lr(Rn)) ≪ 1, e
3T
ε <

3

2
,

where γ = n
2

(
1
p
+ 1

r

)
+ 1

2
. Then, there exists a unique mild solution of (1.3) such that

u ∈ L∞(0, T ;Lp(Rn)) and ∇u ∈ L∞(0, T ;Lr(Rn)).

We will show the proof of Proposition A.2 in Section 3.
In Proposition A.2, we can obtain that the solution u is Hölder continuous in the

spacial variable by the Sobolev embedding. Moreover, using the maximal regularity of
heat equations, we find that the solution u is smooth in (0, T ). However it is not clear
how the regularity of the solution depends on the parameter ε > 0.

To study the regularity, we consider the Hölder estimate of the solution of (A.1). It is
well known that the Harnack inequality gives the interior Hölder continuity for solutions
of parabolic equations. The Harnack constant, the constant in the Harnack inequality,
is related to the Hölder exponent of the solution, hence we can regard that the Harnack
constant has some information of regularity of solutions of (A.1). Now, we study explicit
dependence on the parameter ε > 0 of the Harnack constant for nonnegative solutions of
(A.1) and state our main theorem.

Theorem A.3 (The Harnack inequality). Let uε be a nonnegative mild solution of
(A.1) on (0, 8T )×B4R and 0 < ε < 1. Suppose that 0 ≤ uε ≤M for some M ≥ 0. Then
we have

sup
(T,2T )×BR

uε ≤ CM exp

(
θ

ε

)
inf

(7T,8T )×BR

uε,

where the constant C depends on n, T,R and the constant θ depends on n,M .

The basic strategy to prove theorem is to use the De Giorgi-Nash-Moser method. For
linear parabolic equations, Moser [37] showed the Harnack inequality and it is well-known
that his method may be extended to a nonlinear case. However we can not apply Moser’s
method directly since our equation has the strong nonlinearity and it is generally difficult
to treat the equation by a perturbation method, whenever the parameter ε > 0 is small.
To overcome this difficulty, we employ the Cole-Hopf transform. Formally by using the
Cole-Hopf transform, the nonlinear equation (A.1) is transformed into some linear heat
equation and hence Moser’s method is applicable. Since we consider the mild solution,
we need to justify the Cole-Hopf transform in the weak formulation. For this purpose,
we modify Trudinger’s argument [49] and we investigate the explicit dependence of the
constant on ε.

Once we obtain the theorem, we obtain the Hölder continuity of solutions of (1.1) and
the estimate of the Hölder exponent of solutions. Furthermore, our main theorem may be
developed a finer analysis of the singular limiting problem (A.1) as ε → 0. For instance,
our theorem is connected with the regularity of the derivative of the solution of singular
limiting problem (1.1). Moreover, by the regularity of the gradient of the solution, the
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interface of (A.1) make sense and we study the mean curvature flow and B-M-O algorithm
more clear.

This chapter is organized as follows. In section 2, we show the local maximum prin-
ciple, the weak Harnack inequality and we prove Theorem A.3. In section 3, we give the
existence theorem of the initial value problem of (A.1).

2. Proof of the Harnack inequality

In this section, we consider the Harnack estimate of the solution of the problem (A.1)
and investigate the dependence on the parameter ε > 0 of the Harnack constant.

To prove Theorem A.3, we show the local maximum principle, estimating the supre-
mum of u by the Lp-norm of u, and show the weak Harnack inequality, estimating the
Lp-norm of u by the infimum of u.

First, we give the local maximum principle:

Proposition A.4 (the local maximum principle). Let uε be a nonnegative mild so-
lution of (A.1) on (0, T ) × BR. Then, for all p > 1, 0 ≤ τ < τ ′ < T , 0 < R′ < R and
0 < ε < 1, we have

sup
(τ ′,T )×BR′

uε ≤ Cε−
n+2
2p ∥uε∥Lp((τ,T )×BR),

where the constant C depends on n, p, τ ′, τ, R,R′.

Remark A.5. We consider the following problem:

(A.4) ∂tv −∆v − v = 0, (t, x) ∈ (0, T )×BR.

For a nonnegative subsolution v of (A.4) and for all p > 1, 0 ≤ τ < τ ′ < T , 0 < R′ < R,
we may obtain

sup
(τ ′,T )×BR′

v ≤ C∥v∥Lp((τ,T )×BR),

where the constant C depends on n, p, τ, τ ′, R,R′. We put

vε(t, x) := v

(
t

ε
,
x√
ε

)
,

then we have

∂tvε −∆vε −
1

ε
vε = 0 , (t, x) ∈ (0, εT )×B√

εR.

By change of variable, we find

sup
(ετ ′,εT )×B√

εR′

vε ≤ Cε−
n+2
2p ∥vε∥Lp((ετ,ϵT )×B√

εR).

Therefore the power of ε in Proposition A.4 naturally arises.

Second, we give the weak Harnack inequality:

Proposition A.6 (the weak Harnack inequality). Let uε be a nonnegative mild solu-
tion of (A.1) on (0, T ) × BR. Suppose that 0 ≤ uε ≤ M for some M ≥ 0. Then, for all
p ≥ 1, 0 < τ ≤ T

4
and 0 < R′ < R, we have

∥uε∥Lp((0,τ)×BR′ ) ≤ CM exp

(
θ

ε

)
inf

(3τ,4τ)×BR′
uε,

where the constant C depends on n, p, τ, R′, R and the constant θ depends on n,M .
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Using the local maximum principle and the weak Harnack inequality, we obtain The-
orem A.3.

2.1. Proof of the local maximum principle. Hereafter, we abbreviate the so-
lution uε of (A.1) as u. Before proving Proposition A.4, we show the reverse Hölder
inequality.

Lemma A.7. Let u be a nonnegative mild solution of (A.1), Then for all β > 0 , 0 <
s < s′ < T , 0 < r′ < r and ε < 1, we have the following reverse Hölder inequality:

(A.5) ∥u∥β+1

L(1+ 2
n )(β+1)((s′,T )×Br′ )

≤ C

(
1 +

1

β

)2(
1

ε
(β + 1) +

1

(r − r′)2
+

1

(s′ − s)

)
∥u∥β+1

Lβ+1((s,T )×Br)
,

where the constant C depends on n only.

Proof of Lemma A.7. For simplicity, we treat the estimate for the classical solu-
tion. Set a cut-off function η satisfying

0 ≤ η ≤ 1, η(t, x) = 1 on (s′, T )×Br′ , |∂tη| ≤
4

s′ − s
, |∇η| ≤ 4

r − r′
.

Taking the test function η2uβ in the equation of (A.1), integrating over (s, t)×Br and
neglecting the term u

ε
|∇u|2, we obtain

1

β + 1

∫ t

s

∫
Br

η2∂t(u
β+1) dτdx+ β

∫ t

s

∫
Br

η2uβ−1|∇u|2 dτdx

≤ −2

∫ t

s

∫
Br

uβη∇η · ∇u dτdx+ 1

ε

∫ t

s

∫
Br

η2uβ+1 dτdx.

Using the Young inequality by the first integral of right-hand side, we have

1

β + 1

∫
Br

η2(t)uβ+1(t) dx+
2β

(β + 1)2

∫ t

s

∫
Br

η2
∣∣∇(uβ+1

2

)∣∣2 dτdx
≤ 1

ε

∫ T

s

∫
Br

η2uβ+1 dτdx+
2

β + 1

∫ T

s

∫
Br

η|∂tη|uβ+1 dτdx+
2

β

∫ T

s

∫
Br

|∇η|2uβ+1 dτdx.

From this inequality, we obtain∥∥ηuβ+1
2

∥∥2
L∞(s,T ;L2(Br))

≤ C

{
1

ε
(β + 1) +

(
1 +

1

β

)
1

(r − r′)2
+

1

s′ − s

}∥∥uβ+1
2

∥∥2
L2(s,T ;L2(Br))

and∥∥ηuβ+1
2

∥∥2
L2(s,T ;H1

0 (Br))

≤ C

{
β + 1

ε

(
1 +

1

β

)
+

(
1 +

1

β

)2
1

(r − r′)2
+

(
1 +

1

β

)
1

s′ − s

}
∥u

β+1
2 ∥2L2(s,T ;L2(Br))

,
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Figure A.1. Figure of Dj (We let D∞ := (τ ′, T )×BR′)

where C is the universal constant. Using the Ladyženskaja inequality (B.2), we have∥∥uβ+1
2

∥∥2
L2(1+ 2

n )((s′,T )×Br′ )
≤
∥∥ηuβ+1

2

∥∥2
L2(1+ 2

n )((s′,T )×Br)

≤ C(n)

(
1 +

1

β

)2(
1

ε
(β + 1) +

1

(r − r′)2
+

1

(s′ − s)

)
∥u

β+1
2 ∥2L2((s,T )×Br)

.

This implies the inequality (A.5). □
Proof of Proposition A.4. For j ∈ N0, we put

τj := τ ′ − 2−j(τ ′ − τ) , Rj := R′ + 2−j(R−R′) ,

αj :=

(
1 +

2

n

)j

, Dj := (τj, T )×BRj
.

In the inequality (A.5), we set

β + 1 = pαj, s′ = τj+1 , s = τj, r′ = Rj+1, r = Rj,

then we obtain

(A.6) ∥u∥Lpαj+1 (Dj+1) ≤ C(p, n)
j
αj

(
1

ε
+

1

(τ ′ − τ)
+

1

(R−R′)2

) 1
pαj

∥u∥Lpαj (Dj).

This inequality (A.6) asserts that if ∥u∥Lpαj (Dj) is finite, then ∥u∥Lpαj+1 (Dj+1) is also finite.
Iterating this inequality (A.6), we find

∥u∥Lpαj+1 ((τ ′,T )×BR′ ) ≤ ∥u∥Lpαj+1(Dj+1)

≤
∞∏
j=0

(
C(p, n)

j
αj

(
1

ε
+

1

(τ ′ − τ)
+

1

(R−R′)2

) 1
pαj

)
∥u∥Lp(D0)

= C(p, n)
∑∞

i=1
i
αi

(
1

ε
+

1

(τ ′ − τ)
+

1

(R−R′)2

)n+2
2p

∥u∥Lp((τ,T )×BR).
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We remark that
∑∞

i=1
i
αi

is finite. Taking j → ∞, we have

sup
(τ ′,T )×BR′

u ≤ C(n, p)ε−
n+2
2p

(
1 +

1

τ ′ − τ
+

1

(R−R′)2

)n+2
2p

∥u∥Lp((τ,T )×BR).

□
Remark A.8. In the proof of Proposition A.4 and Lemma A.7, we only consider the

classical solution of (A.1). However using the Steklov average, we may extend our results
for weak solutions of (A.1).

2.2. Proof of the weak Harnack inequality. First, as Lemma A.7, we show the
reverse Hölder inequality.

Lemma A.9. Let u be a nonnegative mild solution of (A.1). Suppose that 0 ≤ u ≤M
for some M ≥ 0. Then, for all β < −1 , 0 < s < s′ < T and 0 < r′ < r, we have the
following reverse Hölder inequality:

(A.7) ∥uβ+1∥
L(1+ 2

n )((s′,T )×Br′ )
≤ Ce

θ
ε

(
1

s′ − s
+

1

(r − r′)2

)
∥uβ+1∥L1((s,T )×Br),

where the constant C depends on n and the constant θ depends on M,β only.

Lemma A.10. Let u be a nonnegative mild solution of (A.1). Suppose that 0 ≤ u ≤M
for some M ≥ 0. Then, for all −1 < β < 0 , 0 < s′ < s < T and 0 < r′ < r, we have the
following reverse Hölder inequality:

(A.8) ∥uβ+1∥
L(1+ 2

n )((0,s′)×Br′ )

≤ Ce
θ
ε max

{
1,

∣∣∣∣1 + 1

β

∣∣∣∣ , ∣∣∣∣1 + 1

β

∣∣∣∣2
}(

1

s− s′
+

1

(r − r′)2

)
∥uβ+1∥L1((0,s)×Br),

where the constant C depends on n and the constant θ depends on M,β only.

Since their proofs are similar, we show these lemmas at the same time.

Proof of Lemma A.9 and Lemma A.10. Set a cut-off function η satisfying 0 ≤
η ≤ 1, and we require more condition for η later. We put b0 = M

ε
for our convenience.

Taking a test function η2e−b0uuβ in the equation of (A.1), integrating over (t0, t)×Br and
neglecting the term u

ε
, we obtain

−
∫ t

t0

∫
Br

η2e−b0uuβ∂tu dτdx−
∫ t

t0

∫
Br

η2e−b0u(βuβ−1 − b0u
β)|∇u|2 dτdx

≤ 2

∫ t

t0

∫
Br

ηe−b0uuβ∇η · ∇u dτdx+ b0

∫ t

t0

∫
Br

η2e−b0uuβ|∇u|2 dτdx.

Using the Young inequality, we have

(A.9) −
∫ t

t0

∫
Br

η2e−b0uuβ∂tu dτdx−
β

2

∫ t

t0

∫
Br

η2e−b0uuβ−1|∇u|2 dτdx

≤ − 2

β

∫ t

t0

∫
Br

e−b0uuβ+1|∇η|2 dτdx.
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For β ̸= −1, we set

f(u) :=


(β + 1)

∫ u

0

e−b0ssβ ds, if β > −1,

−(β + 1)

∫ ∞

u

e−b0ssβ ds, if β < −1.

We remark that ∂tf(u) = (β + 1)e−b0uuβ∂tu. Either if β < −1, by the integral by part,
we have

f(u) = −(β + 1)uβ+1

∫ ∞

1

e−b0urrβ dr (s = ur)

= b0u
β+2

∫ ∞

1

e−b0ur(1− rβ+1) dr

≥ b0u
β+2

∫ ∞

2
− 1

β+1

e−b0ur(1− rβ+1) dr ≥ 1

2
uβ+1e−b0M2

− 1
β+1

.

Otherwise, if −1 < β < 0, we have

f(u) = (β + 1)uβ+1

∫ 1

0

e−b0urrβ dr (s = ur)

≥ e−b0Muβ+1(β + 1)

∫ 1

0

rβ dr = e−b0Muβ+1.

On the other hand, since f(u) ≤ uβ+1, there exists 0 < θ = θ(M,β) ≤ 1 such that

(A.10)
1

2
e−b0θ(M,β)uβ+1 ≤ f(u) ≤ uβ+1.

We remark that

θ(M,β) → ∞ as β → −1,

θ(M,β) → θ(M,−∞) <∞ as β → −∞.

From (A.9) we obtain

(A.11) − 1

β + 1

∫ t

t0

∫
Br

∂t(η
2f(u)) dτdx− 2β

(β + 1)2
e−b0M

∫ t

t0

∫
Br

η2|∇u
β+1
2 |2 dτdx

≤ 2

|β|

∫ t

t0

∫
Br

uβ+1|∇η|2 dτdx+ 2

|β + 1|

∫ t

t0

∫
Br

η|∂tη|uβ+1 dτdx.

We show the inequality (A.7) under the following additional condition

(A.12) η(t, x) = 1 on (s′, T )×Br′ , |∂tη| ≤
4

s′ − s
, |∇η| ≤ 4

r − r′
, t0 = s

to the cut-off function η. Applying the estimates (A.11) and (A.12) to (A.10), and noting
that − 2β

(β+1)2
> 0, we have∥∥ηuβ+1

2

∥∥2
L∞(s,T ;L2(Br))

≤ Ceb0θ
(

1

s′ − s
+

1

(r − r′)2

)∥∥uβ+1
2

∥∥2
L2((s,T )×Br)

and ∥∥ηuβ+1
2

∥∥2
L2(s,T ;H1

0 (Br))
≤ Ceb0θ

(
1

s′ − s
+

1

(r − r′)2

)∥∥uβ+1
2

∥∥2
L2((s,T )×Br)

.
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Using the Ladyženskaja inequality (B.2), we obtain∥∥uβ+1
2

∥∥2
L2(1+ 2

n )((s′,T )×Br′ )
≤
∥∥ηuβ+1

2

∥∥2
L2(1+ 2

n )((s,T )×Br)

≤ C(n)eb0θ
(

1

s′ − s
+

1

(r − r′)2

)∥∥uβ+1
2

∥∥2
L2((s,T )×Br)

,

and this implies (A.7).
Next, we show the inequality (A.8). We assume further condition on the test function

η as

η(t, x) = 1 on (0, s′)×Br′ , |∂tη| ≤
4

s− s′
, |∇η| ≤ 4

r − r′
, t0 = 0.

Then it follows from (A.11) that∥∥ηuβ+1
2

∥∥2
L∞(0,s ;L2(Br))

≤ Ceb0θ max

{
1,

∣∣∣∣1 + 1

β

∣∣∣∣}( 1

s′ − s
+

1

(r − r′)2

)∥∥uβ+1
2

∥∥2
L2((0,s)×Br)

and∥∥ηuβ+1
2

∥∥2
L2(0,s ;H1

0 (Br))

≤ Ceb0θ max

{
1,

∣∣∣∣1 + 1

β

∣∣∣∣ , ∣∣∣∣1 + 1

β

∣∣∣∣2
}(

1

s′ − s
+

1

(r − r′)2

)∥∥uβ+1
2

∥∥2
L2((0,s)×Br)

.

Using the Ladyženskaja inequality (B.2), we obtain∥∥uβ+1
2

∥∥2
L2(1+ 2

n )((0,s′)×Br′ )
≤
∥∥ηuβ+1

2

∥∥2
L2(1+ 2

n )((0,s)×Br)

≤ Ceb0θ max

{
1,

∣∣∣∣1 + 1

β

∣∣∣∣ , ∣∣∣∣1 + 1

β

∣∣∣∣2
}(

1

s′ − s
+

1

(r − r′)2

)∥∥uβ+1
2

∥∥2
L2((0,s)×Br)

,

and this implies (A.8). □

Remark A.11. Introducing the Cole-Hopf transform v = e−
M
ε
u, we find that v is

a subsolution of the linear heat equation under the assumption that u is the classical
solution of (A.1). We may regard that the test function ϕ = η2e−b0uuβ as the justification
of the Cole-Hopf transform for weak formulations. The original idea to cancel out the
nonlinear term may be go-back to Aronson-Serrin [1] and Trudinger [49].

Lemma A.12. Let u be a nonnegative mild solution in (0, T ) × BR with 0 ≤ u ≤ M .
Then, for all q > 0 , 0 ≤ τ < τ ′ < T and 0 < R′ < R, we have

(A.13) inf
(τ ′,T )×BR′

u ≥ C exp

(
−Mθ(n+ 2)

2qε

)(∫ T

τ

∫
BR

u−q dtdx

)− 1
q

where the constant C depends on n, q, τ ′ − τ, R−R′ and the constant θ depends on M, q.

Proof of Lemma A.12. For j ∈ N0, we put

τj = (1− 2−j)(τ ′ − τ) , rj = R′ + 2−j(R−R′) ,

αj =

(
1 +

2

n

)j

, Dj = (0, τj)×BRj
.
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In the inequality (A.7), we set

β + 1 = pαj, s = τj, s′ = τj+1, r′ = Rj+1, r = Rj.

Then we obtain

∥u−q∥Lαj+1 (Dj+1) ≤
{
C(n, q)e

M
ε
θ

(
1

τ ′ − τ
+

1

(R−R′)2

)} 1
αj

2
2j+2
αj ∥u−q∥Lαj (Dj).

Iterating this inequality, we find

sup
(τ ′,T )×BR′

u−q ≤ C(n, q, τ − τ ′, R−R′)e
Mθ(n+2)

2ε ∥u−q∥L1(D0)

Taking the −1
q
-th power, we obtain (A.13). □

Almost the same argument, we obtain the following lemma:

Lemma A.13. Let u be a nonnegative mild solution in (0, T ) × BR with 0 ≤ u ≤ M .
Then, for all 0 < q < 1 ≤ p , 0 < τ ′ < τ ≤ T and 0 < R′ < R, we have

∥u∥Lp((0,τ ′)×BR′ ) ≤ C exp

(
Mθ(n+ 2)

2qε

)(∫ τ

0

∫
BR

uq dtdx

) 1
q

where the constant C depends on n, q, τ − τ ′, R−R′ and the constant θ depends on M, q.

Next, we consider the case β = −1 in the proof of the Lemma A.9 and Lemma A.10.

Lemma A.14. Let u be a nonnegative mild solution of (A.1) in (0, T )×Kr. Suppose
that 0 ≤ u ≤M for some M ≥ 0. Then there exist C, p0 > 0 such that(∫∫

(0, 1
8
T )×K r

2

up0 dtdx

) 1
p0

≤ CM exp

(∫ M

0

1− e−
M
ε
s

s
ds

)(∫∫
( 7
8
T,T )×K r

2

u−p0 dtdx

)− 1
p0

,

where the constant C depends on n, T, r only and the constant p0 depends on n only.

Proof of Lemma A.14. We put t > 0, h ∈ R, β = −1 , t0 = t and t = t+ h in the
inequality (A.9). Replacing Br with Kr := {x := (xi)i ∈ Rn : max1≤i≤n |xi| < r}, we find

(A.14) −
∫ t+h

t

∫
Kr

η2e−b0uu−1∂tu dτdx+
1

2

∫ t+h

t

∫
Kr

η2e−b0uu−2|∇u|2 dτdx

≤ 2

∫ t+h

t

∫
Kr

e−b0u|∇η|2 dτdx.

Letting

f(u) := −
∫ u

1

e−b0ss−1 ds,

then by ∂tf(u) = −e−b0uu−1∂tu and ∇f(u) = −e−b0uu−1∇u, we see from (A.14) that∫ t+h

t

∫
Kr

η2∂tf(u) dτdx+
1

2

∫ t+h

t

∫
Kr

η2eb0u|∇f(u)|2 dτdx

≤ 2

∫ t+h

t

∫
Kr

e−b0u|∇η|2 dτdx.
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We freeze ρ > 0 and x0 ∈ Kr so that Kρ(x0) ⊂ Kr. We select a cut-off function η such
that

η = η(x) = 1, x ∈ K ρ
2
(x0) ,

supp η ⊂⊂ Kρ(x0) ,

0 ≤ η ≤ 1 , |∇η| ≤ 4

ρ
,

{x ∈ Rn : η(x) ≥ λ} is convex for all λ ≥ 0.

Then we obtain∫
Kρ(x0)

η2f(u) dx

∣∣∣∣t+h

t

+
1

2

∫ t+h

t

∫
Kρ(x0)

η2|∇f(u)|2 dτdx ≤ Chρn−2,

where the constant C depends on n only.
Applying Lemma B.6 by g = f(u) , µ = η2 and D = Kρ(x0), we find∫
Kρ(x0)

η2f(u) dx

∣∣∣∣t+h

t

+ C1

∫
Kρ(x0)

η2dx

ρn+2

∫ t+h

t

∫
Kρ(x0)

(f(u)− V (τ))2η2 dτdx ≤ Chρn−2,

where C1 is the constant depending on n and

V (τ) :=

∫
Kρ(x0)

f(u(τ, x))η2 dx∫
Kρ(x0)

η2 dx
.

Dividing by h
∫
Kρ(x0)

η2 dx and letting h→ 0, we obtain

dV

dt
+

C1

ρn+2

∫
K ρ

2
(x0)

(f(u)− V (t))2 dx ≤ Cρn−2∫
Kρ(x0)

η2 dx
≤ C2ρ

−2, a.a. 0 < t < T

where the constant C2 depends on n only. We put 0 < t0 < T such that 0 < t0 − ρ2

4
<

t0 +
ρ2

4
< T and set

w1(t, x) = f(u)− V (t0)− C2ρ
−2(t− t0),

W1(t) = V (t)− V (t0)− C2ρ
−2(t− t0).

Then

(A.15)


dW1

dt
+

C1

ρn+2

∫
K ρ

2
(x0)

(w1 −W1)
2 dx ≤ 0,

W1(t0) = 0.

For s > 0, we put

Qρ,s(t) := {x ∈ Kρ(x0) : w1(t, x) > s}.

Since W1(t) ≤ 0 for t0 ≤ t ≤ t0 +
ρ2

4
by (A.15), we have

w1 −W1 ≥ s−W1 > 0, t ≥ t0 , x ∈ Q ρ
2
,s(t)

hence
dW1

dt
+

C1

ρn+2
(s−W1(t))

2|Q ρ
2
,s(t)| ≤ 0.
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Therefore

|Q ρ
2
,s(t)|

ρn+2
≤ C−1

1 (s−W1(t))
−2d(s−W1)

dt
= C−1

1

d

dt
{−(s−W1(t))

−1}.

Integrating over (t0, t0 +
ρ2

4
), we find

1

ρn+2

∫ t0+
ρ2

4

t0

|Q ρ
2
,s(t)| dt ≤ C−1

1

{
1

s−W1(t0)
− 1

s−W1(t0 +
ρ2

4
)

}
≤ 1

C1s
.

We set U+ := (t0, t0 +
ρ2

4
)×K ρ

2
(x0), then

1

|U+|

∫∫
U+

√
(f(u)− V (t0))+ dtdx

=
1

|U+|

∫∫
U+

√
(w1(t, x) + C2ρ−2(t− t0))+ dtdx

≤ 1

|U+|

(∫∫
U+

√
w1(t, x)+ dtdx+

∫∫
U+

√
C2ρ−2(t− t0) dtdx

)

≤ 1

|U+|

1

2

∫ t0+
ρ2

4

t0

(∫ ∞

0

s−
1
2 |Q ρ

2
,s(t)| ds

)
dt+

√
C2

4
|U+|

 .

(A.16)

Here we write ∫ t0+
ρ2

4

t0

(∫ ∞

0

s−
1
2 |Q ρ

2
,s(t)| ds

)
dt

=

∫ t0+
ρ2

4

t0

(∫ 1

0

s−
1
2 |Q ρ

2
,s(t)| ds+

∫ ∞

1

s−
1
2 |Q ρ

2
,s(t)| ds

)
dt

=: I1 + I2.

Using the following estimates

I1 ≤
∫ t0+

ρ2

4

t0

(∫ 1

0

s−
1
2 |K ρ

2
| ds
)
dt = 2|U+| ,

I2 ≤
∫ ∞

1

s−
1
2

∫ t0+
ρ2

4

t0

|Q ρ
2
,s(t)| dt

 ds ≤
∫ ∞

1

s−
1
2
ρn+2

C1s
ds =

8

C1

|U+|,

we obtain
1

|U+|

∫∫
U+

√
(f(u)− V (t0))+ dtdx ≤ C,

where C is the constant depending on n only.

We set U− = (t0 − ρ2

4
, τ)×K ρ

2
(x0) and by the same argument, we have

1

|U−|

∫∫
U−

√
(V (t0)− f(u))+ dtdx ≤ C.
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Consequently, for 0 < t0 < T , x0 ∈ Kr and ρ > 0 with (t0 − ρ2

4
, t0 +

ρ2

4
) × K ρ

2
(x0) ⊂

(0, T )×Kr we have

1

|U+|

∫∫
U+

√
(f(u)− V (t0))+ dtdx ≤ C,

1

|U−|

∫∫
U−

√
(V (t0)− f(u))+ dtdx ≤ C.

By the parabolic John-Nirenberg estimate, Lemma B.8, we have

(A.17)

(∫∫
(0, 1

8
T )×K r

2

e−p0f(u) dtdx

)(∫∫
( 7
8
T,T )×K r

2

e−p0f(u) dtdx

)
≤ C.

Now, we give the following lemma.

Lemma A.15. Let

A = exp

(
−
∫ M

1

1− e−b0s

s
ds

)
, B = exp

(∫ 1

0

1− e−b0s

s
ds

)
.

Then we have

− logBξ ≤ f(ξ) ≤ − logAξ

for all 0 < ξ ≤M .

Proof of Lemma A.15. We show that

F1(ξ) := − logAξ − f(ξ) ≥ 0

for all 0 < ξ ≤M . By differentiating F1, we have

F ′
1(ξ) := −1

ξ
+
e−b0ξ

ξ
≤ 0.

Therefore F1(ξ) ≥ F1(M) for 0 < ξ ≤M . Since

F1(M) = − logA−
∫ M

1

1− e−b0s

s
ds,

we have F1(M) = 0 if and only if A = exp
(
−
∫M

1
1−e−b0s

s
ds
)
and hence F1(ξ) ≥ 0 for all

0 < ξ ≤M .
As the similar argument, we obtain − logBξ ≤ f(ξ) for all 0 < ξ ≤M . □
By Lemma A.15 and the estimate (A.17), we have(∫∫

(0, 1
8
T )×K r

2

ep0 logAu dtdx

)(∫∫
( 7
8
T,T )×K r

2

e−p0 logBu dtdx

)
≤ C,

or (∫∫
(0, 1

8
T )×K r

2

up0 dtdx

) 1
p0

≤ C
B

A

(∫∫
( 7
8
T,T )×K r

2

u−p0 dtdx

)− 1
p0

.

□
Using Lemma A.12, A.13 and A.14, we obtain Proposition A.6.
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3. Existence of a mild solution

We show Proposition A.2, namely the existence of the mild solution of the following
initial value problem:

(A.18)

{
∂tu−∆u+

u

ε
(|∇u|2 − 1) = 0, (t, x) ∈ (0, T )× Rn,

u(0, x) = u0(x), x ∈ Rn.

To prove Proposition A.2, we give key estimates.

Lemma A.16. Let 1 ≤ q ≤ p ≤ ∞. Then for all ϕ ∈ Lq(Rn) we have

∥etAεϕ∥p ≤ C1e
t
ε t−γ∥ϕ∥q,

∥∇etAεϕ∥p ≤ C2e
t
ε t−(γ+ 1

2
)∥ϕ∥q,

where

γ =
n

2

(
1

q
− 1

p

)
.

and C1, C2 are constants depending on p, q, n only.

Using the Lp-Lq estimate for et∆, we obtain Lemma A.16. In Lemma A.16, we may
take

C1 = (4π)−
n
2
( 1
q
− 1

p
), C2 = C04

−γ

(
|Sn−1|Γ

(
n(n− 2γ + 1)

2n(n− 2γ)

))1− 2γ
n

,

where the constant C0 depends on n only, |Sn−1| is the area of the (n − 1)-dimensional
unit sphere and Γ is the gamma function, namely

Γ(s) :=

∫ ∞

0

ts−1e−t dt.

In this section, the constants C1, C2 are as in Lemma A.16. To construct the contraction
mapping, we set the following function spaces.

Definition A.17. Let 1 ≤ p, r ≤ ∞ , T,M > 0. We define

XM(T ) = XM,p,r(T ) := {u ∈ C([0, T ] ;Lp(Rn)) : ∇u ∈ C([0, T ] ;Lr(Rn)) ,

∥u∥XM
:= ∥u∥C([0,T ] ;Lp(Rn)) + ∥∇u∥C([0,T ] ;Lr(Rn)) ≤M}.

We define the distance of XM(T ) by

d(u, v) := ∥u− v∥C([0,T ] ;Lp(Rn)) + ∥∇(u− v)∥C([0,T ] ;Lr(Rn)).

We denote the homogeneous Sobolev space by Ẇ 1,q(Rn). Since XM(T ) is closed in
C([0, T ] ;Lp(Rn))∩C([0, T ] ; Ẇ 1,q(Rn)) and C([0, T ] ;Lp(Rn))∩C([0, T ] ; Ẇ 1,q(Rn)) is com-
plete, XM(T ) is a complete metric space.

3.1. Estimate of perturbation.

Definition A.18. Using etAε , we define

(A.19) Φ(u) := etAεu0 −
1

ε

∫ t

0

e(t−τ)Aεu(τ)|∇u(τ)|2 dτ

for u ∈ XM(T ).
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We show the existence of a fixed point for Φ. First, we take T > 0 such that we define
Φ on XM(T ).

Lemma A.19. Let 1 ≤ p, q ≤ ∞ be satisfying

1

p
+

1

q
<

1

n
,

1

p
+

2

q
≤ 1,

and let M,γ be

M := 2(∥u0∥p + ∥∇u0∥q), γ =
n

2

(
1

p
+

1

q

)
+

1

2
.

Let 0 < T0 < 1 be small enough such that

CT 1−γ
0 M2 ≪ 1, e

T0
ε <

3

2
,

where C is the constant depending on n, p, q, ε only. Then Φ(u) ∈ XM(T ) for all T < T0
and u ∈ XM(T ).

Remark A.20. We can take T0 explicitly so that

(A.20) e
T0
ε ≤ 3

2
,

1

ε

(
C1rT

1−n
q

0

r − n
+
C2T

1−γ
0

1− γ

)
≤ 1

4M2
.

Proof of Lemma A.19. First, we consider the estimate of ∥Φ(u)∥C([0,T ] ;Lp(Rn)). We
put r ≥ 1 as 1

r
= 1

p
+ 2

q
. By Lemma A.16, we have

∥Φ(u(t))∥p ≤ ∥etAu0∥p +
1

ε

∫ t

0

∥e(t−τ)Au(τ)|∇u(τ)|2∥p dτ

≤ ∥etAu0∥p +
C1

ε

∫ t

0

e
t−τ
ε (t− τ)−

n
q ∥u(τ)|∇u(τ)|2∥r dτ.

(A.21)

Using the Hölder inequality, we have ∥u(τ)|∇u(τ)|2∥r ≤ ∥u(τ)∥p∥∇u(τ)∥2q hence

∥Φ(u(τ))∥p ≤ ∥etAu0∥p +
C1

ε

∫ t

0

e
t−τ
ε (t− τ)−

n
q ∥u(τ)∥p∥∇u(τ)∥2q dτ.

We remark q > n since 1
n
> 1

q
+ 1

p
. Therefore taking a supremum for t in (A.21), we find

sup
0≤t≤T

∥Φ(u(t))∥p ≤ e
T
ε ∥u0∥p +

C1

ε
e

T
ε sup

0≤t≤T

∫ t

0

(t− τ)−
n
q ∥u(τ)∥p∥∇u(τ)∥2q dτ

≤ e
T
ε ∥u0∥p +

C1

ε
e

T
ε sup

0≤t≤T
∥u(t)∥p sup

0≤t≤T
∥∇u(t)∥2q sup

0≤t≤T

∫ t

0

(t− τ)−
n
q dτ

≤ e
T
ε ∥u0∥p +

C1

ε
e

T
εM3 sup

0≤t≤T

∫ t

0

(t− τ)−
n
q dτ.

Since ∫ t

0

(t− τ)−
n
q dτ =

q

q − n

[
−(t− τ)−

n
q
+1
]t
0
=

q

q − n
t1−

n
q ,

we obtain

sup
0≤t≤T

∥Φ(u(t))∥p ≤ e
T
ε ∥u0∥p +

C1

ε
e

T
εM3 qT

1−n
q

q − n
.
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Next, we consider ∥∇Φ(u)∥C([0,T ] ;Lq(Rn)). Differentiating (A.19), we can write

∇Φ(u(t)) = ∇etAu0 −
1

ε

∫ t

0

e(t−τ)A∇(u(τ)|∇u(τ)|2) dτ.

Considering the Lp-Lq estimate of the derivative in Lemma A.16, we find

∥∇Φ(u(t))∥q ≤ ∥etA∇u0∥q +
1

ε

∫ t

0

∥∥∥∇e(t−τ)A
(
u(τ)|∇u(τ)|2

)∥∥∥
q
dτ

≤ ∥etA∇u0∥q +
C2

ε

∫ t

0

e
t−τ
ε (t− τ)−γ∥u(τ)|∇u(τ)|2∥r dτ,

where 1
r
= 1

p
+ 2

q
. Using the Hölder inequality for the integrand, we have ∥u|∇u|2∥r ≤

∥u∥p∥∇u∥2q. Since

γ =
n

2

(
1

p
+

1

q

)
+

1

2
< 1,

we have

∥∇Φ(u(t))∥q ≤ ∥etA∇u0∥q +
C2

ε
e

T
ε

∫ t

0

(t− τ)−γ∥u(τ)∥p∥∇u(τ)∥2q dτ.

As the previous estimate, taking the supremum for t, we obtain

sup
0≤t≤T

∥∇Φ(u(t))∥q ≤ e
T
ε ∥∇u0∥q +

C2

ε
e

T
εM3 T

1−γ

1− γ
.

From the above estimate, we have

∥Φ(u)∥XM
≤ M

2
e

T
ε +

M3e
T
ε

ε

(
C1qT

1−n
q

q − n
+
C2T

1−γ

1− γ

)
.

Taking T0 as (A.20), we obtain

∥Φ(u)∥XM
≤ 3M

4
+
M

4
≤M

for T < T0, therefore if u ∈ XM(T ), then Φ(u) ∈ XM(T ). □

3.2. Contraction of Φ.

Lemma A.21. Let p, q be as Lemma A.19. Then for small T > 0, Φ is a contraction
mapping on XM(T ).

Proof of Lemma A.21. By Lemma A.16 we find

∥Φ(u(t))− Φ(v(t))∥p ≤
1

ε

∫ t

0

∥e(t−τ)A(u(τ)|∇u(τ)|2 − v(τ)|∇v(τ)|2)∥p dτ

≤ C1

ε

∫ t

0

e
t−τ
ε (t− τ)−

n
q ∥u(τ)|∇u(τ)|2 − v(τ)|∇v(τ)|2∥r dτ
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for u, v ∈ XM(T ), where 1
r
= 1

p
+ 2

q
. By the Hölder inequality, we have

∥u(t)|∇u(t)|2 − v(t)|∇v(t)|2∥r ≤ ∥(u(t)− v(t))|∇u(t)|2∥r + ∥(|∇u(t)|2 − |∇v(t)|2)v(t)∥r
≤ ∥(u(t)− v(t))∥p∥∇u(t)∥2q
+ ∥∇u(t) +∇v(t)∥q∥∇(u(t)− v(t))∥q∥v(t)∥p

≤M2∥u(t)− v(t)∥p + 2M2∥∇(u(t)− v(t))∥q,
and hence

sup
0≤t≤T

∥Φ(u(t))− Φ(v(t))∥p

≤ 2M2C1qe
T
ε T 1−n

q

ε(q − n)

(
sup

0≤t≤T
∥u(t)− v(t)∥p + sup

0≤t≤T
∥∇(u(t)− v(t))∥q

)
.

As the similar estimate, putting γ = n
2

(
1
p
+ 1

q

)
+ 1

2
we find

sup
0≤t≤T

∥∇(Φ(u(t))− Φ(v(t)))∥q

≤ 2M2C2e
T
ε T 1−γ

ε(1− γ)

(
sup

0≤t≤T
∥u(t)− v(t)∥p + sup

0≤t≤T
∥∇(u(t)− v(t))∥q

)
.

From the above estimate, we obtain

∥Φ(u)− Φ(v)∥XM
≤ 2M2e

T
ε

ε

(
C1qT

1−n
q

q − n
+
C2T

1−γ

1− γ

)
∥u− v∥XM

.

Therefore, taking T > 0 small enough so that

(A.22)
2M2e

T
ε

ε

(
C1qT

1−n
q

q − n
+
C2T

1−γ

1− γ

)
≤ 3

4
,

we have

∥Φ(u)− Φ(v)∥XM
≤ 3

4
∥u− v∥XM

.

□
Remark A.22. We take T0 > 0 satisfying (A.20). Then the inequality (A.22) is

satisfied for all T < T0.

Proof of Proposition A.2. By Lemma A.19 and Lemma A.21, we find that Φ is
a contraction mapping on XM(T ). Since Cauchy’s fixed point theorem, Φ has a fixed
point, namely there uniquely exists u ∈ XM(T ) such that Φ(u) = u. This u satisfies (A.3)
and is unique in {u ∈ C([0, T ] ;Lp(Rn)) : ∇u ∈ C([0, T ] ;Lq(Rn))}. □

Remark A.23. We consider the following initial-boundary problem:

(A.23)


∂tu−∆u+

u

ε
(|∇u|2 − 1) = 0, (t, x) ∈ (0, T )× Ω,

u(0, x) = u0(x), x ∈ Ω,

u(t, x) = 0, (t, x) ∈ (0, T )× ∂Ω.

If Lemma A.16 holds, then we may use our argument and show the existence of a solution
of (A.23).
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APPENDIX B

Some fundamental calculus

Their results are well-known, however we give the proof for self-containedness.

1. Algebraic inequalities

Lemma B.1 (DiBenedetto [18, Lemma 4.4 in p.13]). Let p > 2 and d ∈ N. Then there
exists C0 > 0 depending only on p such that

(B.1) (|a|p−2a− |b|p−2b) · (a− b) ≥ C0|a− b|p

for all a, b ∈ Rd.

Proof of Lemma B.1. Since p > 2, we have

(|a|p−2a− |b|p−2b) · (a− b) =

(∫ 1

0

d

ds
{|sa+ (1− s)b|p−2(sa+ (1− s)b)} ds · (a− b)

)
≥
∫ 1

0

|sa+ (1− s)b|p−2|a− b|2 ds.

Either if |a| ≥ |b− a|, we have

|sa+ (1− s)b|p−2 = |a− (1− s)(a− b)| ≥
∣∣∣|a| − (1− s)|a− b|

∣∣∣ ≥ s|a− b|

and hence we obtain (B.1). Otherwise, namely if |a| < |b− a|, we obtain

|sa+ (1− s)b| ≤ |a|+ (1− s)|b− a| ≤ (2− s)|b− a|

and hence

|a− b|2
∫ 1

0

|sa+ (1− s)b|p−2 ds ≥ |a− b|2
∫ 1

0

(|sa+ (1− s)b|2) p
2

(2− s)2|b− a|2
ds

≥ 1

4

(∫ 1

0

|sa+ (1− s)b|2 ds
) p

2

=
1

4

1

3
p
2

(|a|2 + |b|2 + (a · b))
p
2 .

Remarking that |a|2 + |b|2 + (a · b) = 1
4
|a− b|2 + 3

4
|a+ b|2, we obtain (B.1). □

2. Sobolev type inequalities

Proposition B.2 (Ladyženskaja-Solonnikov-Ural’ceva [29, p.74]). Let I ⊂ R be an
open interval and let Ω ⊂ Rn be a domain. Then for f ∈ L∞(I ;L2(Ω)) ∩ L2(I ;H1

0 (Ω))
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and p, q ≥ 2 satisfying

2

q
+
n

p
=
n

2
if n ̸= 2,

2

q
+
n

p
=
n

2
without q = 2, p = ∞ if n = 2,

we obtain

(B.2) ∥f∥Lq(I ;Lp(Ω)) ≤ C(n, p, q)(∥f∥L∞(I ;L2(Ω)) + ∥∇f∥L2(I×Ω)).

Proof of Proposition B.2. By the Gagliardo-Nirenberg-Sobolev inequality, we
have

∥f(t)∥Lp(Ω) ≤ C(n, p)∥∇f(t)∥
n
2
−n

p

L2(Ω)∥f(t)∥
1−(n

2
−n

p
)

L2(Ω) a.a. t ∈ I.

Taking Lq(I) norm on both side, we obtain (B.2). □
Remark B.3. If r = q in the Ladyženskaja inequality, we obtain

(B.3) ∥f∥
L2(1+ 2

n )(I×Ω)
≤ C(∥f∥L∞(I ;L2(Ω)) + ∥f∥L2(I×Ω)).

Proposition B.4 (Ladyženskaja-Solonnikov-Ural’ceva [29, p.91]). Let f ∈ W 1,1(Bρ)
be a non-negative function and let l > k. Then there exists a constant C > 0 depending
on n only such that

(l − k)|{f > l}| ≤ Cρn+1

|Bρ| − |{f > k}|

∫
{k<f≤l}

|∇f | dx,

where the n -dimensional Lebesgue measure of A ⊂ Rn is denoted by |A|.

For the proof of Proposition B.4, we need the following weighted Poincaré inequality:

Lemma B.5 (Ladyženskaja-Solonnikov-Ural’ceva [29, Lemma 5.1 in p.89]). Let g be a
non-negative function in W 1,1(Bρ) and let N0 := {g = 0}. Let η(x) = η(|x|) be a decreas-
ing function of |x| satisfying 0 ≤ η ≤ 1 and η

∣∣
N0

≡ 1. Then for measurable set N ⊂ Bρ,

we have ∫
N

g(x)η(x) dx ≤ Cnρ
n

|N0|
|N |

1
n

∫
Bρ

|∇g(x)|η(x) dx.

Proof of Lemma B.5. We firstly consider the case n ≥ 2. For x ∈ N , x′ ∈ N0, we
have

g(x) = g(x)− g(x′) = −
∫ |x′−x|

0

d

dr
g(x+ rω) dr ≤

∫ |x′−x|

0

|∇g(x+ rω)| dr

where ω = x′−x
|x′−x| . We show

(B.4) η(x) ≤ η(x+ rω) for 0 < r ≤ |x′ − x|.
Either if |x| ≤ |x′|, then x + rω ∈ B|x′| by the convexity of B|x′|. By the monotonicity
of η, we have η(x + rω) ≥ η(x′) = 1. Otherwise, if |x| > |x′|, then x + rω ∈ B|x|. Since
η(x+ rω) ≥ η(x), we obtain (B.4).

By (B.4), we have

g(x)η(x) ≤
∫ |x′−x|

0

|∇g(x+ rω)|η(x+ rω) dr.
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Integrating over x ∈ N and x′ ∈ N0, we have

|N0|
∫
N

g(x)η(x) dx ≤
∫
N

dx

∫
N0

dx′
∫ |x′−x|

0

|∇g(x+ rω)|η(x+ rω) dr.

Let g(x) = η(x) be zero on x ∈ Rn \Bρ. Introducing the polar coordinate, we obtain∫
N0

dx′
∫ |x′−x|

0

|∇g(x+ rω)|η(x+ rω) dr

≤
∫
B2ρ(x)

dx′
∫ |x′−x|

0

|∇g(x+ rω)|η(x+ rω) dr

≤
∫
B2ρ(x)

dx′
∫ |x′−x|

0

|∇g(x+ rω)|η(x+ rω) dr

=

∫ 2ρ

0

sn−1 ds

∫
Sn−1

dσ

∫ s

0

|∇g(x+ rω)|η(x+ rω)

rn−1
rn−1 dr

(
x′ = sσ + x,
σ ∈ Sn−1, s > 0

)

=

∫ 2ρ

0

sn−1 ds

∫
Bs(x)

|∇g(y)|η(y)
|x− y|n−1

dy (y = x+ rσ)

≤ (2ρ)n

n

∫
Bρ

|∇g(y)|η(y)
|x− y|n−1

dy,

where Sn−1 is the (n− 1)-dimensional unit sphere. Therefore,

|N0|
∫
N

g(x)η(x) dx ≤ (2ρ)n

n

∫
N

dx

∫
Bρ

|∇g(y)|η(y)
|x− y|n−1

dy

=
(2ρ)n

n

∫
Bρ

|∇g(y)|η(y) dy
∫
N

1

|x− y|n−1
dx.

We show the following estimate:

(B.5)

∫
N

1

|x− y|n−1
dx ≤ (1 + |Sn−1|)|N |

1
n

where |Sn−1| is the area of the (n− 1)-dimensional unit sphere. To show (B.5), let δ > 0
be chosen later. We split the integral∫

N

1

|x− y|n−1
dx ≤

∫
N∩{|x−y|≤δ}

1

|x− y|n−1
dx+

∫
N∩{|x−y|≥δ}

1

|x− y|n−1
dx

=: I1 + I2.

By the simple calculation, we obtain

I1 ≤
∫ δ

0

rn−1

rn−1
dr

∫
Sn−1

dσ = δ|Sn−1|, I2 ≤
∫
N

1

δn−1
dx ≤ δ1−n|N |.

Taking δ = |N | 1n , we have I1 + I2 ≤ (1 + |Sn−1|)|N | 1n . Using (B.5), we have

|N0|
∫
N

g(x)η(x) dx ≤ 2n(1 + |Sn−1|)
n

ρn|N |
1
n

∫
Bρ

|∇g(y)|η(y) dy.
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We consider the case n = 1. For x ∈ N and x′ ∈ N0, we have

g(x) = g(x)− g(x′) =

∫ x

x′

d

dy
g(y) dy ≤

∣∣∣∣∫ x

x′

∣∣∣∣ ddyg(y)
∣∣∣∣ dy∣∣∣∣ .

Since

g(x)η(x) ≤
∣∣∣∣∫ x

x′

∣∣∣∣ ddyg(y)η(y)
∣∣∣∣ dy∣∣∣∣ ≤ ∫ −1

1

∣∣∣∣ ddyg(y)η(y)
∣∣∣∣ dy,

we obtain ∫
N

g(x)η(x) dx ≤ |N |
∫ 1

−1

|∇g(x)|η(x) dx.

□
Proof of Proposition B.4. Let

g(x) := max{l − k , (f − k)+} ∈ W 1,1(Bρ), N0 := {f < k},
η(x) ≡ 1, N := {f > l}.

Then, by Lemma B.5, we have∫
N

g(x) dx ≤ Cnρ
n|N | 1n
|N0|

∫
Bρ

|∇g(x)| dx,

hence

(l − k)|{f > l}| ≤ Cnρ
n|{f > l}| 1n
|{f < k}|

∫
{k<f≤l}

|∇f(x)| dx.

□
Next, we give another type of the weighted Poincaré inequality.

Lemma B.6 (Lieberman [30, p.113 Lemma 6.12]). Let µ be a nonnegative continuous
function in a bounded convex domain D with compact support. Furthermore {x ∈ D :
µ(x) ≥ λ} is convex for all λ ≥ 0. Then∫

D

(g(x)− k)2µ(x) dx ≤ C
(diamD)n+2

A
∥µ∥L∞(D)

∫
D

|∇g(x)|2µ(x) dx

for all g ∈ H1(D), where

A =

∫
D

µ(x) dx, k =

∫
D
g(x)µ(x) dx

A
.

Proof of Lemma B.6. Considering µ
A
, we may assume A = 1. By the Hölder in-

equality, we have∫
D

(g(x)− k)2µ(x) dx =

∫
D

(∫
D

(g(x)− g(y))µ(y) dy

)2

dx

≤
∫
D

dx

∫
D

|g(x)− g(y)|2µ(x)µ(y) dy.

We fix x, y ∈ suppµ with x ̸= y and let ω = y−x
|y−x| . Then

|g(x)− g(y)|2 =

∣∣∣∣∣
∫ |y−x|

0

d

dr
g(x+ rω) dr

∣∣∣∣∣
2

≤ |y − x|
∫ |y−x|

0

|∇g(x+ rω)|2 dr.
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Since {z ∈ D : µ(z) ≥ min{µ(x), µ(y)}} is convex, we find

µ(x+ rω) ≥ min{µ(x), µ(y)}

for 0 < r < |y − x|. Using µ(x)µ(y) ≤ ∥µ∥L∞(D)min{µ(x), µ(y)}, we have

|g(x)− g(y)|2µ(x)µ(y) ≤ ∥µ∥L∞(D)|y − x|
∫ |y−x|

0

|∇g(x+ rω)|2µ(x+ rω) dr.

We let d = diamD and g(z) = µ(z) = 0 if z ∈ Rn \D. Then for all x ∈ suppµ,∫
D

|g(x)− g(y)|2µ(x)µ(y) dy

≤ ∥µ∥L∞(D)

∫
Bd(x)

|y − x| dy
∫ |y−x|

0

|∇g(x+ rω)|2µ(x+ rω) dr

= ∥µ∥L∞(D)

∫ d

0

sn ds

∫
Sn−1

dσ

∫ s

0

|∇g(x+ rω)|2µ(x+ rω)

rn−1
rn−1 dr

(
y = sσ + x

0 ≤ s ≤ d, σ ∈ Sn−1

)
= ∥µ∥L∞(D)

∫ d

0

sn ds

∫
Bs(x)

|∇g(z)|2µ(z)
|z − x|n−1

dz

(
ω = y−x

|y−x| = σ

z = x+ rω

)
=

dn+1

n+ 1
∥µ∥L∞(D)

∫
D

|∇g(z)|2µ(z)
|z − x|n−1

dz.

Therefore∫
D

(g(x)− k)2µ(x) dx ≤
∫
D

dx

∫
D

|g(x)− g(y)|2µ(x)µ(y) dy

≤ dn+1

n+ 1
∥µ∥L∞(D)

∫
D

dx

∫
D

|∇g(z)|2µ(z)
|z − x|n−1

dz

=
dn+1

n+ 1
∥µ∥L∞(D)

∫
D

|∇g(z)|2µ(z) dz
∫
D

|z − x|n−1 dx.

As the same argument of the proof of Lemma B.5, we have∫
D

|z − x|n−1 dx ≤ C(n)|D|
1
n ≤ C(n) diamD

and we obtain Lemma B.6. □

3. Parabolic John-Nirenberg estimates

Before giving the parabolic John-Nirenberg estimate, we introduce some notations:
Let N ∈ N be a space dimension. For r > 0, we put Kr = [−r, r]N , Ur = (−r2, r2)×Kr

and
U+
r = (0, r2)×Kr, U−

r = (−r2, 0)×Kr,

V +
r =

(
1

2
r2, r2

)
×Kr, V −

r =

(
−r2,−1

2
r2
)
×Kr,

W+
r =

(
3

4
r2, r2

)
×Kr, W−

r =

(
−r2,−3

4
r2
)
×Kr.
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Figure B.1. Definition of Kr, U
+
r , V

+
r and W+

r for N = 1

Definition B.7. For C ⊂ RN+1, we call C a parabolic rectangle if there exist (t0, x0) ∈
RN+1 and r > 0 such that C = (t0, x0) + Ur. For parabolic rectangle C, we write

C+ = (t0, x0) + U+
r , C− = (t0, x0) + U−

r ,

D+ = (t0, x0) + V +
r , D− = (t0, x0) + V −

r ,

E+ = (t0, x0) +W+
r , E− = (t0, x0) +W−

r .

We write U = U1 for short and U±, V ±,W± are defined in a similar manner. In this
section, we show the following lemma:

Lemma B.8 (Moser [37] , Fabes-Garofalo [22]). Let f be a function on U . Suppose
that there exists constant A > 0 such that for all parabolic rectangle C ⊂ U we have

1

|C+|

∫∫
C+

√
(f(t, x)− VC)+ dtdx ≤ A,

1

|C−|

∫∫
C−

√
(VC − f(t, x))+ dtdx ≤ A,

(B.6)

for some constant aC ∈ R depending on C only. Then there exist p0, C0 > 0 such that(∫∫
W+

ep0f(t,x) dtdx

)(∫∫
W−

e−p0f(t,x) dtdx

)
≤ C|W+||W−|,

where the constant C0 depends on N and the constant p0 depends on N,A.

To show Lemma B.8, we firstly give the estimate of distribution functions of f .

Lemma B.9. As for the same assumption of Lemma B.8, we obtain∣∣∣{(t, x) ∈ V + : (f(t, x)− aU)+ > α
}∣∣∣ ≤ Be−b

√
α
A |V +|∣∣∣{(t, x) ∈ V − : (f(t, x)− aU)− > α

}∣∣∣ ≤ Be−b
√

α
A |V +|

(B.7)

for all α > 0, where the constants B, b depend only on N .

proof of Lemma B.9. Considering −f(−t, x), we only show the first inequality of
(B.7). Without loss of generality, we assume A = 1 and aU = 0 by considering f−aU

A2 . For

α ≤ 1, we have e−bα
1
2 ≥ e−b and hence for α > 1, we show∣∣∣{(t, x) ∈ V + : f+(t, x) > α

}∣∣∣ ≤ Be−b
√

α
A |V +|.
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We give a decomposition procedure. We fix β > 0. We subdivide D+
0 = V + into

4N+2 congruent sub-rectangles with disjoint interiors. Let {D+
1,i(β)}i denote the family of

those sub-rectangles and C1,i(β) denote the corresponding parabolic rectangle of D+
1,i(β).

Next, for D+
1,i(β) satisfying β ≥ aC1,i(β), we similarly subdivide D1,i(β) and the process is

repeated indefinitely. Then we obtain {D+
n,i(β)}n,i and we put

D(β) :=
∞∪
n=1

∪
i

D+
n,i(β).

We show

(B.8)
√
f+(t, x) ≤ 1 +

√
β a.a. (t, x) ∈ D0 \D(β).

In fact, if (t, x) ∈ D0 \D(β), then we obtain the sequence of parabolic rectangles {Cn}∞n=1

such that

(t, x) ∈ D+
n , aCn ≤ β and |Cn| → 0 as n→ ∞.

Therefore, by (B.6) and A = 1, we have

1

|C+
n |

∫
C+

n

√
f+(t, x) dtdx ≤ 1

|C+
n |

∫
C+

n

√
(f(t, x)− aCn)+ dtdx+

√
β ≤ 1 +

√
β.

By the Lebesgue differentiation theorem, we obtain

1

|C+
n |

∫
C+

n

√
f+(t, x) dtdx→

√
f+(t, x) as n→ ∞

for almost all (t, x) ∈ D0 \D(β). From (B.8), for β > 0, we have

{(t, x) ∈ D+
0 : f(t, x) ≥ (1 +

√
β)2} ⊂ D(β).

Claim B.10. There exists a constant C0 depending only on N such that if
√
β ≥√

α + 1, then

(B.9) |D(β)| ≤ C0√
β −

√
α− 1

|D(α)|.

We show Lemma B.9 by temporary admitting Claim B.10. Put L := 2C0 + 1. Then
for γ > 0, we have∣∣∣D((γ + L)2

)∣∣∣ ≤ C0

(γ + L)− γ − 1

∣∣D(γ2)
∣∣ ≤ 1

2

∣∣D(γ2)
∣∣.

For β > 0, we take n0 ∈ N ∪ {0} satisfying n0L ≤ β ≤ (n0 + 1)L. Then we find∣∣D(β2)
∣∣ ≤ ∣∣D((n0L)

2)
∣∣ ≤ (1

2

)n0−1 ∣∣D(L2)
∣∣ ≤ 4

(
1

2

)α
L ∣∣D+

0

∣∣ = 4e−
β
L
log 2
∣∣D+

0

∣∣.
Therefore, for α > 1, we have∣∣∣{(t, x) ∈ V + : f+(t, x) > α

}∣∣∣ ≤ ∣∣∣D((√α− 1)2
)∣∣∣ ≤ 4e−

√
α−1
L

log 2|V +|.

and we obtain Lemma B.9.
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We show the inequality (B.9). {D+
n,i(β)} is disjoint interiors but {C−

n,i(β)} may not

be. Hence we make a disjoint family of {C−
n,i(β)} as follows: First, we take {∗C−

1,j(β)} ⊂
{C−

1,i(β)} with disjoint interiors and

IntC−
1,i(β)

∩(∪
j

Int ∗C−
1,j(β)

)
̸= ∅

for all i. Second, we take {∗C−
2,j(β)} ⊂ {C−

2,i(β)} such that {∗C−
m,j(β)}1≤m≤2 , j is disjoint

interiors and

IntC−
2,i(β)

∩( ∪
1≤m≤2

∪
j

Int ∗C−
m,j(β)

)
̸= ∅

for all i. Similarly, for n ∈ N, we take {∗C−
n,j(β)} ⊂ {C−

n,i(β)} such that {∗C−
m,j(β)}1≤m≤n , j

is disjoint interiors and

IntC−
n,i(β)

∩( ∪
1≤m≤n

∪
j

Int ∗C−
m,j(β)

)
̸= ∅

for all i.
For 0 < α < β, we take {D+

n,i(α)} and {D+
n,i(β)} by the decomposition procedure. Let

{∗C−
m,j(β)} be the disjoint family of {C−

n,j(β)}. For m ∈ N, we put

Im :=

{
(n, i) : IntC−

n,i(β)
∩( ∪

1≤m′≤m

∪
j

Int ∗C−
m′,j(β)

)
̸= ∅

and IntC−
n,i(β)

∩( ∪
1≤m′≤m−1

∪
j

Int ∗C−
m′,j(β)

)
= ∅
}
.

Since (n, i) ∈ Im for some m ≤ n, we have

|D(β)| =
∞∑

m=1

∑
(n,i)∈Im

|D+
n,i(β)|.

For a rectangle C ⊂ RN+1 and a > 0, let aC be a rectangle which length are the length
of C a times. Since

D+
n,i(β) ⊂ 4C−

n,i(β) ⊂
∪
j

16∗C−
m,j(β) for (n, i) ∈ Im,

we have
∞∑

m=1

∑
(n,i)∈Im

|D+
n,i(β)| ≤ 16N+1

∞∑
m=1

∑
j

|∗C−
m,j(β)|.

Since {D+
l,k(α)} is disjoint interiors, we find

|D(β)| ≤ 16N+1

∞∑
l=1

∑
(m,j)∈Jl

|∗C−
m,j(β)|,
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where Jl :=
{
(m, j) : D+

m,j(β) ⊂
∪

kD
+
l,k(α)

}
. For (m, j) ∈ Jl, we have√

β <
√
a∗C−

m,j(β)

≤ 1

|∗C−
m,j(β)|

∫
∗C−

m,j(β)

√
(f(t, x)− a∗C−

m,j(β)
)− dtdx+

1

|∗C−
m,j(β)|

∫
∗C−

m,j(β)

√
f+(t, x) dtdx

≤ 1 +
1

|∗C−
m,j(β)|

∫
∗C−

m,j(β)

√
f+(t, x) dtdx

and hence

(
√
β − 1)

∑
(m,j)∈Jl

|∗C−
m,j(β)| ≤

∑
(m,j)∈Jl

∫
∗C−

m,j(β)

√
f+(t, x) dtdx.

Furthermore, since D+
m,j(β) ⊂ D+

l,k(α) ⊂ D+
l−1,k′(α) for some (l, k), k′ and aCl−1,k′ (α)

≤ α,
we have∑

(m,j)∈Jl

∫
∗C−

m,j(β)

√
f+(t, x) dtdx

≤
∑

(m,j)∈Jl

∫
∗C−

m,j(β)

√
(f(t, x)− aCl−1,k′ (α)

)+ dtdx+
√
α|∗C−

m,j(β)|.

For (l, k), we put

Jl,k := {(m, i) : D+
m,i(β) ⊂ D+

l,k(α)}.

Then ∗C−
m,j(β) ⊂ C+

l−1,k′(α) for all (m, j) ∈ Jl,k and for some k′ depending only on k. By

the disjointness of {∗C−
m,j(β)}, we obtain∑

(m,j)∈Jl

∫
∗C−

m,j(β)

√
(f(t, x)− aCl−1,k′ (α)

)+ dtdx

=
∑
k

∑
(m,j)∈Jl,k

∫
∗C−

m,j(β)

√
(f(t, x)− aCl−1,k′ (α)

)+ dtdx

=
∑
k

∫
∪(m,j)∈Jl,k

∗C−
m,j(β)

√
(f(t, x)− aCl−1,k′ (α)

)+ dtdx

≤
∑
k

∫
C+

l−1,k′ (α)

√
(f(t, x)− aCl−1,k′ (α)

)+ dtdx

≤
∑
k

|C+
l−1,k′(α)| = 2

∑
k

|D+
l−1,k′(α)| = 2 · 4N+2

∑
k

|D+
l,k(α)|.

Finally, we obtain

|D(β)| ≤ C(N)
∞∑
l=1

∑
k

1√
β −

√
α− 1

|D+
l,k(α)| ≤ C(N)

1√
β −

√
α− 1

|D(α)|

and proof of (B.9) is complete. □
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Lemma B.11. As the same assumption of Lemma B.8, there exists A′ > 0 depending
only on N,A such that

1

|D+|

∫∫
D+

(f(t, x)− VC)+ dtdx ≤ A′,

1

|D−|

∫∫
D−

(VC − f(t, x))+ dtdx ≤ A′,

(B.10)

for all parabolic cylinder C ⊂ U .

proof of Lemma B.11. We only show the first inequality of (B.10). By Lemma
B.9, we have ∣∣∣{(t, x) ∈ D+ : (f(t, x)− aC)+ > α

}∣∣∣ ≤ Be−b
√

α
A |D+|.

Therefore
1

|D+|

∫∫
D+

(f(t, x)− VC)+ dtdx ≤ B

∫ ∞

0

e−b
√

α
A dα <∞.

□
As the same argument of the proof of Lemma B.9, we obtain the following lemma:

Lemma B.12. Assume that there exists A′ > 0 such that (B.10) holds for all parabolic
rectangle C ⊂ U . Then there exist constants B′, b′ > 0 depending only on N such that∣∣∣{(t, x) ∈ W+ : (f(t, x)− aU)+ > α

}∣∣∣ ≤ B′e−b′( α
A
)|W+|,∣∣∣{(t, x) ∈ W− : (f(t, x)− aU)− > α

}∣∣∣ ≤ B′e−b′( α
A
)|W−|.

proof of Lemma B.8. Let p0 <
b′

A′ where A
′ is as Lemma B.11 and b′ is as Lemma

B.12. Then∫
W+

ep0f(t,x) dtdx ≤ ep0aU
∫
W+

ep0(f(t,x)−aU )+ dtdx

≤ ep0aU
∫
W+

p0

(∫ (f(t,x)−aU )+

0

ep0α dα + 1

)
dtdx

≤ ep0aUp0

(∫ ∞

0

ep0α
∣∣∣{(t, x) ∈ W+ : (f(t, x)− aU)+ > α

}∣∣∣ dα + |W+|
)

≤ ep0aUp0

(∫ ∞

0

ep0α(B′e−
b′
A′ α) dα + 1

)
|W+|

≤ ep0aUp0

(
B′
∫ ∞

0

e(p0−
b′
A′ )α dα + 1

)
|W+|.

Similarly, ∫
W−

e−p0f(t,x) dtdx ≤ e−p0aUp0

(
B′
∫ ∞

0

e(p0−
b′
A′ )α dα + 1

)
|W−|.

Therefore,∫
W+

ep0f(t,x) dtdx

∫
W−

e−p0f(t,x) dtdx ≤ p0

(
B′
∫ ∞

0

e(p0−
b′
A′ )α dα + 1

)2

|W+||W−|

and proof of Lemma B.8 is complete. □
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4. Recursive inequalities

Lemma B.13 (Ladyženskaja-Solonnikov-Ural’ceva [29, p.96]). Let C, ε, δ > 0 , b ≥ 1
and let {Yn}∞n=0 , {Zn}∞n=0 ⊂ (0,∞) satisfy

Yn+1 ≤ Cbn(Y 1+δ
n + Y δ

nZ
1+ε
n ),

Zn+1 ≤ Cbn(Yn + Z1+ε
n ).

(B.11)

Set

d := min

{
δ,

ε

1 + ε

}
, λ = min

{
(2C)−

1
δ b−

1
δd , (2C)−

1+ε
ε b−

1
εd

}
.

Then, if Y0 ≤ λ and Z0 ≤ λ
1

1+ε , we obtain

(B.12) Yn ≤ λb−
n
d , Zn ≤ (λb−

n
d )

1
1+ε .

In particular, Yn, Zn → 0 as n→ ∞.

Proof of Lemma B.13. Inequalities (B.12) are valid for n = 0. We prove (B.12)
by induction. If (B.12) hold for n, then by (B.11), we have

Yn+1 ≤ 2Cλ1+δbn(1−
1+δ
d

), Zn+1 ≤ 2Cλbn(1−
1
d
).

Since λ ≤ (2C)−
1
δ b−

1
δd and d ≤ δ, we have

2Cλ1+δbn(1−
1+δ
d

) ≤ λb−
1
d b−

n
d
+n(1− δ

d
) ≤ λb−

n+1
d .

Similarly, since λ ≤ (2C)−
1+ε
ε b−

1
εd , we obtain

2Cλbn(1−
1
d
) = 2Cλ

ε
1+ελ

1
1+ε b−

n+1
(1+ε)d bn(1−

1
d
)+ n+1

(1+ε)d ≤ (λb−
n+1
d )

1
1+ε bn(1−

ε
(1+ε)d

).

Since d ≤ ε
1+ε

, we find 1− ε
(1+ε)d

≤ 0 and hence we have (B.12) for n+ 1. □

Lemma B.14 (Giaquinta [23, Lemma 2.1 in p.86]). Let ϕ = ϕ(s) be a non-negative
function on [0,∞). Assume that for some constants R0, A0, A1, B, α, β > 0 with β < α,
the function ϕ satisfies

ϕ(ρ) ≤ A0ϕ(R),

ϕ(ρ) ≤ A1

(
ρ

R

)α

ϕ(R) + BRβ

for all 0 < ρ ≤ R ≤ R0. Then, there exists a constant C > 0 depending only on
A0, A1, α, β such that

ϕ(ρ) ≤ C

{(
ρ

R

)β

ϕ(R) +Bρβ

}
.

Proof of Lemma B.14. Let r < 1 be chosen later. For R ≤ R0, taking ρ = rR, we
have

ϕ(rR) ≤ A1r
αϕ(R) + BRβ.

We fix β < γ < α and we put r = r0 satisfying A1r
α
0 ≤ rγ0 . Then

ϕ(r0R) ≤ A1r
α
0ϕ(R) +BRβ ≤ rγ0ϕ(R) + BRβ.
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Therefore, for k ∈ N ∪ {0}, we have

ϕ(rk+1
0 R) ≤ r

(k+1)γ
0 ϕ(R) +Brkβ0 Rβ

k∑
j=0

r
j(γ−β)
0 .

Since
k∑

j=0

r
j(γ−β)
0 ≤

∞∑
j=0

r
j(γ−β)
0 =

rβ0

rβ0 − rγ0
,

we obtain

ϕ(rk0R) ≤ rkγ0 ϕ(R) + rkβ0
BRβ

rβ0 − rγ0
for k ∈ N ∪ {0}. For ρ > 0, there exists k0 ∈ N ∪ {0} such that rk0+1

0 R ≤ ρ ≤ rk00 R.
Therefore, we obtain

ϕ(ρ) ≤ A0ϕ(r
k0
0 R) ≤ A0

(
rkγ0 ϕ(R) + rkβ0

BRβ

rβ0 − rγ0

)
≤ A0

(
r−γ
0

(
ρ

R

)γ

ϕ(R) + r−β
0

(
ρ

R

)β
BRβ

rβ0 − rγ0

)
.

□

5. Weak Lp spaces and Lorentz spaces

Let Ω ⊂ Rn be a domain (not necessary bounded).

Definition B.15. For 1 ≤ p <∞, we define the Lorentz space Lp,∞(Ω) by

Lp,∞(Ω) := {f ∈ L1
loc(Ω) : λpµ|f |(λ) is bounded for all λ > 0}

where µ|f |(λ) := |{x ∈ Ω : |f(x)| > λ}|.

Proposition B.16 (cf. Benilan-Brezis-Crandall [6, p.548]). For 1 < p <∞, we have

p− 1

p1+
1
p

∥f∥Lp
w(Ω) ≤ sup

λ>0
λµ|f |(λ)

1
p ≤ ∥f∥Lp

w(Ω).

Proof of Proposition B.16. We firstly show supλ>0 λµ|f |(λ)
1
p ≤ ∥f∥Lp

w(Ω). For
ρ, λ > 0, we take K = {x ∈ Ω : |f(x)| > λ} ∩Bρ. Then we have

∥f∥Lp
w(Ω) ≥

∣∣∣{x ∈ Ω ∩Bρ : |f(x)| > λ
}∣∣∣ 1p−1

∫
{|f |>λ}∩Bρ

|f(x)| dx

≥ λ
∣∣∣{x ∈ Ω ∩Bρ : |f(x)| > λ

}∣∣∣ 1p ,
where {|f | > λ} = {x ∈ Ω : |f(x)| > λ}. Letting ρ→ ∞, we find

λµ|f |(λ)
1
p ≤ ∥f∥Lp

w(Ω).

We show p−1

p
1+ 1

p
∥f∥Lp

w(Ω) ≤ supλ>0 λµ|f |(λ)
1
p . We fix λ0 > 0. For measurable set K ⊂ Ω, we

have ∫
K

|f(x)| dx ≤ λ0|K|+
∫
{|f |>λ0}

|f(x)| dx.
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By the above inequality, we have∫
{|f |>λ0}

|f(x)| dx =

∫ ∞

0

∣∣∣{x ∈ {|f | > λ0} : |f(x)| > λ
}∣∣∣ dλ

=

∫ λ0

0

∣∣{|f | > λ0}
∣∣ dλ+

∫ ∞

λ0

∣∣{|f | > λ}
∣∣ dλ

= λ0µ|f |(λ0) +

∫ ∞

λ0

µ|f |(λ) dλ

≤ λ1−p
0 sup

λ>0
λpµ|f |(λ) + sup

λ>0
λpµ|f |(λ)

∫ ∞

λ0

λ−p dλ

= sup
λ>0

λpµ|f |(λ)
p

p− 1
λ1−p
0 .

Taking λp0|K| = p supλ>0 λ
pµ|f |(λ), we find∫

K

|f(x)| dx ≤ p

p− 1
(p sup

λ>0
λpµ|f |(λ))

1
p |K|1−

1
p

or

∥f∥Lp
w(Ω) ≤

p1+
1
p

p− 1
sup
λ>0

λµ|f |(λ)
1
p .

□
From Proposition B.16, we immediately obtain the following corollary:

Corollary B.17. Let p, q > 1 and let f ∈ Lpq
w (Ω). Then |f |q ∈ Lp

w(Ω).
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[36] Mizuno, M., Remarks on Hölder continuity for solutions of the p-harmonic heat flow, preprint.
[37] Moser, J., A Harnack inequality for parabolic differential equations, Comm. Pure Appl. Math. 17

(1964), 101–134.
[38] Nagai, T. and Mimura, M., Some nonlinear degenerate diffusion equations related to population

dynamics, J. Math. Soc. Japan 35 (1983), 539–562.
[39] Ogawa, T., Decay and asymptotic behavior of solutions of the Keller-Segel system of degenerate and

nondegenerate type, Self-similar solutions of nonlinear PDE, Banach Center Publ., vol. 74, Polish
Acad. Sci., Warsaw, 2006, 161–184.

[40] Ogawa, T., Asymptotic stability of a decaying solution to the Keller-Segel system of degenerate type,
Differential Integral Equations 21 (2008), 1113–1154.

[41] Ogawa, T. and Mizuno, M., Asymptotic stability for the Keller-Segel system of degenerate type with
critical nonlinearity, preprint.

[42] Ogawa T. and Taniuchi, Y., The limiting uniqueness criterion by vorticity for Navier-Stokes equa-
tions in Besov spaces, Tohoku Math. J. (2) 56 (2004), 65–77.
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