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CHAPTER 1

Introduction

1. Introduction

In this thesis, we consider Holder continuity for weak solutions to non-linear degenerate
parabolic equations. The porous medium equation or the p-harmonic heat flow equation
is one of the non-linear degenerate parabolic equations. It is well-known that the solution
of the non-linear degenerate parabolic equation is not generally smooth. For example, the
Barenblatt solution is an explicit solution to the porous medium equation which is not
differentiable.

The Holder continuity of solutions of these equations was firstly studied by Caffarelli-
Friedman [11], DiBenedetto-Friedman [20] and Wiegner [51]. Their results however did
not include the case of equations with an external force. It is important to consider the
non-linear degenerate parabolic equation with an external force in the application. If we
consider the non-linearly perturbed problem, the external term is necessarily treated and
it is worth to consider regularity theory for the non-linear degenerate parabolic problem
with an external force.

In the presented thesis, we mainly focus on the regularity problem for the non-linear
degenerate parabolic equation with an external force and we apply the regularity result
to study the large time asymptotic behavior of the solution for the non-linearly perturbed
problem.

1.1. Holder estimates for solutions of the porous medium equations with
external forces. In Chapter 2, we study interior Holder regularity of weak solutions for
the Cauchy problem of the porous medium equation with external forces:

(1.1) u(0,z) = up(x) >0, r e R"™,

{8tu—Au“:divf+g, t>0,reR"

where u = u(t, z) : (0,00) x R" — R is the unknown function, f = f(¢,z) : (0,00) x R" —
R™ g =g(t,z): (0,00) x R" = R and ug = ug(z) : R™ — [0, 00) are given external and
initial data and « > 1 is a constant. When f, g = 0, the equation (1.1) is called a porous
medium equation. The porous medium equation is described as the model of gas flow
through a porous medium, non-linear heat transfer, ground water flow and population
dynamics (cf. Vazquez [50]). The porous medium equation is one of the non-linear
degenerate parabolic equations, namely the diffusion coefficient cu®~! may vanish. On
the point that the diffusion coefficient vanishes, the porous medium equation behaves like
the hyperbolic equation. Meanwhile, on the point that the diffusion coefficient does not
vanish, the porous medium equation can be regarded as the parabolic equation. Therefore,
when we study the porous medium equation, we need to take into account both properties.

5



U(t,x) —

FIGURE 1.1. the Barenblatt solution (¢: fixed, oo = 3)

The solution of the porous medium equation is not necessarily smooth and the solution
is not generally differentiable in a classical sense. Therefore, we introduce the notion of
weak solutions of the porous medium equation in the sense of distribution.

DEFINITION 1.1. For uy € LY(R") and for f,g € L'(0,00; L'(R"™)), we call u a weak
solution of (1.1) if there exists 7' > 0 such that
(1) u(t,z) >0 for almost all (¢,x) € [0,T) x R™;
(2) we L>0,T; LYR™) N L*(R")) with Vu® € L*((0,T) x R");
(3) u satisfies (2.1) in the sense of distribution: For all ¢ € C'(0,T; C3(R™)), and
for almost all 0 <t < T,

t t
/ u(t)p(t) de — / / udyp drdx + / Vu® - Vo drdz
R® 0 Jre 0 Jrr

t t
:/ upe(0) dm—/ / f-Vgodea:—l—/ / gpdrdz.
Rn o Jrn o Jrn

The existence of the weak solution is firstly shown by Oleinik-Kalasinkov-Czou [43].
J. L. Lions [31] also showed by using the Galerkin method (see also Otani [44]).

From the properties of the parabolic equations, one may expect that the weak solution
has certain weaker regularity. On the other hand, since the equation is degenerate, the
weak solution is not smooth in general. In fact, if f,g = 0, the following Barenblatt
solution is one of the explicit weak solution of (1.1):

_ 2\
(12) %7%)_;@_& LI ) ,

(1+o0t)e 200 (1+at)s ),

where 0 = n(a — 1) + 2, (h(t,z)); := max{h(t,z),0} and A > 0 is a constant. In view
of (1.2), the solution to (1.1) generally fails the smooth regularity, while one may expect
the weak solution have weak regularity such as Holder continuity. Indeed, the Barenblatt
solution (1.2) is Holder continuous in ¢ and x. Thus we are interested in the Hélder
regularity of the weak solution of (1.1) with presence of f and g.

Caffarelli-Friedman [11] and Caffarelli-Vazquez-Wolanski [10] showed the Holder con-
tinuity of the weak solution of (1.1) under the assumption f,g = 0. They essentially
used the Aronson-Benilan type pointwise estimate [2] and the comparison principle for
the weak solution. The Aronson-Benilan estimate is not generally known for the solu-
tions of the porous medium equation with external forces. Furthermore, if the equation
is vector valued or involves non-local effect such as the system with other equations, the
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comparison principle does not generally hold. Therefore, it is worth to derive the Holder
regularity of the weak solution of (1.1) without using the comparison principle.

DiBenedetto-Friedman [19, 20] and Wiegner [51] showed Hélder continuity for the
gradient of the weak solution of the p-Laplace evolution equation:

(13) O — div(|Vo|P2Vv) = 0, t>0,r €R",
' v(0, z) = vo(x), x e R",
where p > 2. Their method does not rely on the comparison principle. If we let u := |Vu],

then u solves
O — div(uP~*Vu) = F(Vov, D*v, Dv)
for some function F' and their method may be applicable to obtain the Holder continuity
of the weak solution of the porous medium equation. In fact, DiBenedetto-Friedman
mentioned the Holder continuity of the weak solution of (1.1) with the external force
f € L10,00; LP(R™)) and g € L2(0,00; L2 (R")) satisfying % + % < 1. Our main result
is to give the explicit proof of the Holder estimate of the weak solutions, especially, we
show the explicit representation of the Holder continuity of the weak solution on external
forces.
To specify the class of external forces, we introduce weak LP spaces.

DEFINITION 1.2. For a domain Q C R and an exponent p > 1, a function f € L .(Q)
belongs to LP (Q) if

1
Pl = s — [ |fldr<oc,
kCQ : compact |K| » JK

Our main theorem is the following:

THEOREM 1.3. Let a > 1 and let u be a bounded weak solution of (1.1). Assume
feLs (O, 00 ; L@V(R")) and g € L3 (0, 00 ; L;%(]R”)) for some p,q > 2 satisfying %—l—g < 1.
Then, for all € > 0, the weak solution u is uniformly Hélder continuous on (g,00) x R"
and there exist constants C,~v > 0 such that for all (t,z),(s,y) € (g,00) x R™, we have

u(t, ) — u(s,y)| < C(|t — 5|2 + |z —y|"),

where v > 0 is depending only onn, o, p,q and C' > 0 is depending only onn, o, p,q, <, f, g
and SUpP(g o) xrn U-

We remark that the explicit dependence of the constant C' in Theorem 1.3 may be
obtained in terms of f, g and sup(g .)xgs® (cf. Theorem 2.4). We further remark

=1 may be Lipschitz continuous (cf. Caffarelli-Vazquez-

that the pressure function u
Wolanski [10]).

The proof of Theorem 1.3 is based on the intrinsic scaling argument and the alternative
method by DiBenedetto-Friedman [20]. They introduced the modified parabolic cylinders
whose dimensions are intrinsically scaled to reflect the degeneracy in (1.1). Since they use
the local oscillation of the solution as the intrinsic scaling, it seems difficult to obtain the
explicit Holder estimate of the weak solution. We use the local maximum of the solution
as the intrinsic scaling and reconstruct the alternative selection argument. In the course
of the proof, the Caccioppoli estimate plays an important role. Including all the term of
external forces into the Caccioppoli estimate, we obtain much generalized condition on
the external force.



1.2. Regularity and asymptotic behavior for the Keller-Segel system of
degenerate type with critical non-linearity. In Chapter 3, we consider the Cauchy
problem for the Keller-Segel system of degenerate type:

Ou — Au® +div(uVey) =0,  t>0,z€R",
(1.4) — AY+1p =, t>0,z€R",
u(0,2) = up(x) > 0. e R,

where a > 1. Keller and Segel [27] gave a semi-linear parabolic system as the model of
chemotaxis. Considering that the diffusion of organisms is depending on the density and
taking the zero relaxation time limit, we obtain the degenerate Keller-Segel system (1.4).
Since ) = (—A + 1)7'u is given by the Bessel potential of u, the Keller-Segel system
(1.4) can be reduced to a single non-linear degenerate parabolic equation with a non-local
term. As the case of the porous medium equation, we define the weak solution of (1.4)
as in the sense of distribution since the regularity of solutions is not generally available.

Nagai and Mimura [38] firstly considered the degenerated model (1.4) as the model of
the population dynamics with n = 1 (see also Diaz-Galiano-Jiingel [16, 17]). Otani [44]
showed the existence of the local solution of (1.4). Sugiyama [46] and Sugiyama-Kunii [48]
studied the existence or non-existence of the global solution of the Keller-Segel system
(1.4). They showed that if @ < 2 — 2 and the initial data o is sufficiently small in some
sense, then there exists a global decaying solution. Since the solution goes to zero, we may
regard the non-linear term div(uV) in (1.4) as a small perturbation and the solution of
(1.4) asymptotically converges to the Barenblatt solution of the porous medium equation
without external forces. In fact, Luckhaus-Sugiyama [32] showed the asymptotic profile
of the solution in L? spaces when 1 < o < 2 — %, n >3 and 1 < p < oco. Ogawa [40]
showed that if 1 < a < 2 — %, then the algebraic convergence rate is obtained for the
remainder term in L' space. He used the forward self-similar transform and the Holder
continuity of the rescaled solution. For the critical case o = 2 — %, since the uniform
Holder regularity of the rescaled solution was not clear, we did not show the explicit
convergence rate for the remainder term. Using the uniform Holder estimate in Chapter
2, we obtain the algebraic convergence rate of the remainder term of the solution for the
case of critical non-linearity as t — oo.

THEOREM 1.4. Let « = 2 — 2 and n > 3. Assume that ug € L*(R™) N L*(R")
sufficiently small in some sense and |x|"uy € L'(R") for some a > n. Then, there exist
C >0 and v > 0 such that the corresponding global weak solution u of (1.4) satisfies

u(t) — % ()| prwny < C(L+0t)™", >0,

where 0 = n(a— 1) + 2 and

_ 2 a-1
Uta)=(1+ot) s (A_ a1 | )
20 (1+0t)o/ 4

is the Barenblatt solution with the constant A > 0 satisfying || % ||1 = ||uo||1-
To prove Theorem 1.4, we show the decay estimate of the entropy functional of the
rescaled solution. We follow the basic strategy to derive the uniform convergence rate by

the method due to Carrillo-Toscani [15]. The key idea is to derive the decay estimate
of the entropy functional and use the relative entropy estimate. To this end, we need to
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differentiate the entropy functional with respect to the time variable ¢. Since the equation
(1.4) is degenerate, the rescaled solution is not generally differentiable. To overcome this
difficulties, we use the uniform Holder continuity of the rescaled solution and apply it to
obtain the decay rate of the entropy functional.

By the explicit decay rate of the remainder term, we obtain the optimal decay rate
of the solution of (1.4). Indeed, we find that the optimal decay rate of the solution is
the same decay rate as the decay rate of the Barenblatt solution of the porous medium
equation.

1.3. Holder continuity for solutions of the p-harmonic heat flow. In Chapter
4, we consider the following p-harmonic heat flow equation:

{ du — div(|VuPVu) = div f,  t>0, 2 € R",

(1.5) u(0,x) = ug(x), r € R",

where p > 2 is a constant, u : (0,00) x R” — R is unknown function, f : (0,00) x R” — R"
and ugp : R™ — R are given external and initial data.

It is well-known that the p-harmonic operator — div(|Vu[P~2Vu) is derived by the
Euler-Lagrange equation of a p-energy functional ||Vu|l;,. The evolution equation (1.5)
is described as the gradient flow of the p-energy functional with the lower order term.

We are interested in how the regularity of f is reflected in the regularity of solutions.
For the case p = 2, the Holder and more higher regularity for the solution of (1.5) is
well-known (cf. Giaquinta [23] and the references there in). For the case p > 2 and
f =0, the Holder continuity of the gradient of solutions was established by DiBenedetto-
Friedman [19, 20] and Wiegner [51]. Misawa [33] showed the gradient Holder estimate
of the solution of (1.5) with the external force f. He assumed the Hélder continuity of the
external force with respect to ¢t and x. We generalize his results and give more suitable
condition of the external force for the Holder continuity of the gradient of solutions.

THEOREM 1.5. Let u be a weak solution of (1.5) satisfying Vu € L>((0,00) x R").
Assume that for some constant K >0 and v >n—+2— 1%’ the external force f satisfies

to p
(1.6) / / IV f|75 daedt < KR™
to—R2 J{zeR":|z—zo|<R}

for all (to, zy) € (0,00) x R™ and 0 < R < 1 satisfying (to — R* ty) x {x € R : |z — x| <
R} C (0,00) x R™. Then Vu is Holder continuous, namely for all € > 0,

Vu(t,x) = Vu(s,y)| < C(|t = s|? + |z —y|")

for (t,x), (s,y) € (g,00) x R™, where the constant v > 0 depends only on n,p,v and the
constant C' > 0 depends only on n,p, Yo, €.

To prove Theorem 1.5, we consider the time dependent mean oscillation of f and we
show the decay estimate of the mean oscillation of Vu using the perturbation argument.
It is well-known that we need to show the decay estimate of the mean oscillation of Vu
to obtain the Holder continuity (cf. Campanato [14]). By the Morrey type regularity of
V f, we obtain the decay estimate of the mean oscillation of Vu. If the external force f is
Holder continuous with respect to ¢ and x, then we have the Morrey type regularity (1.6)
of Vf. Hence our results cover the results of Misawa [33].
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In Appendix A, we consider some semi-linear parabolic equation related to the mean
curvature flow. We study the Harnack inequality of non-negative solutions for the Cauchy
problem of the semi-linear parabolic equation. Particularly, we give the explicit depen-
dence of the Harnack inequality on the coefficient of the semi-linear parabolic equation.

2. Notation

In this thesis, we use the following notation. We denote a set of nonnegative integer
by No. For p,6p > 0 and ¢, € R, we write open intervals I,(to) = (to — p* to) and
I (to) = (to — %% t5). For p > 0 and zy € R", we denote the n-dimensional open
ball with radius p and center zy by B,(zy). We also denote the open cube with length
p and center xy = (x¢,); by K,(xo) = {y = (v;); € R* : maxi<;<, |20, — | < p}.
We define parabolic cylinders Q,(to, zo), Q% (to, o) by Q,(to,z0) = I,(to) X B,(x) and
Q% (to, m9) = I%(tg) X By(xo). For a parabolic cylinder Q,(to, o), we define a parabolic
boundary 9,Q,(to, zo) by

0Qy(to,70) i= ({to = p*} X By(wo) ) U (I(to) x OB, (o).
For (t,z), (s,y) € R x R", we write a parabolic distance dist, ((¢,2), (s,y)) by

: 1
dist, ((¢, ), (s,y)) = max{|t — 5|2, |z — y|}.
For A, B C R x R", we write a parabolic distance dist,(A, B) by
dist,(A, B) := inf dist,(z,2).

z€A,2’€B
We denote the set of infinitely differentiable functions with compact support in 2 by
Cee(2). We denote the space of p-th integrable functions in 2 by LP(§2). We denote the
norm of LP(2) by || f||zr() and if there is no confusion, we write || f||, = ||f|lz»() for
short. For k£ € N and 1 < p < 0o, we write the Sobolev space by

Wh(Q) = {u € L) : lullweoy = Y 1Dl in(ey < oo}.

|| <k

As the Sobolev space W*2(Q) is the Hilbert space, we denote W*2(Q) by H*(Q). The
completion C§°(€2) in H'(Q) is denoted by Hj(£2). We define the weak LP spaces L? (£2)
by

LR (Q) = {f € Lioe(Q) : Ifllg) = sup : /K |l dw < OO}-

ECQ: compact |K|1_%
For a € R, we define the weighted L? space LE(2) by
L5(Q) = {f € Lioe(Q) « [2]"f € LP()}.

For a Banach space X and time interval I C R, we denote the set of X-valued p-th
powered integrable functions in I by LP(I ; X') and the set of X-valued essentially bounded
maps in I by L*°(I; X), endowed with a norm

1
P
[l o) = (/IIIU(t)H?( dt) o Nullzerix) = ess.sup [lu(t) | x.

tel
10



A Banach-valued function space L%(I,; LP(B,)) is abbreviated to LI(L2)(Q, ) and
another function spaces are also same. For a set A, we denote the characteristic function

by xa, namely . P
) :C e Y

Xa(z) = {07 v ¢ A

For a function f on a set A, we denote the oscillation of f in A by osc4 f :=sup, f—inf4 f.
We denote the positive part of f and the negative part of f by fy := max{0, f} and
f- = max{0, —f}, respectively. We remark that a superscript plus or minus is different
of the positive part or the negative part. For a constant k € R and a function f on a set
Q, we let
{f>k} ={2zeQ: f(zx) >k}

and other level sets such as {f < k} are defined in a similar manner. For a measurable
set A C R™ and an integrable function f on A, we denote an integral mean by

1
(f)a -_W/Afdfﬁ-

We denote a constant depending on «, 3,... by C(«, 3,...). The same letter C' will be
used to denote different constants. We use subscript numbers if we distinguish between
the constants.
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CHAPTER 2

Holder estimates for solutions of the porous medium equation
with external forces

1. The porous medium equation with external forces

We consider the following degenerate parabolic equation:
Ou — Au® = div f + g, t>0,zeR",
{ u(0,x) = ug(x) >0, r e R",

where o > 1 is a constant, u = u(t,z) : (0,00) x R" — R is unknown, uy = ug(z) : R" —
[0,00), f= f(t,z):(0,00) x R" - R™ and g = g(t,x) : (0,00) x R* — R are given data.
For f,g =0, the equation (2.1) is called the porous medium equation. The equation (2.1)
is a degenerate parabolic equation since the diffusion coefficient au®~! may vanish. It
is well-known that solutions of the degenerate parabolic equation (2.1) are not generally
smooth even if the initial data uy is enough smooth. Thus we introduce the notion of
weak solutions.

DEFINITION 2.1. For uy € LY(R") and for f,g € L'(0,00; L}(R™)), we call u a weak
solution of (2.1) if there exists 7" > 0 such that
(1) u(t,z) >0 for almost all (¢,x) € [0,T) x R™;
(2) we L*(0,T; LY R™) N L*(R")) with Vu® € L*((0,T) x R");
(3) u satisfies (2.1) in the sense of distribution, namely for all ¢ € C'(0,T ; C3(R™))
and for almost all 0 <t < T,

t t
/ u(t)p(t) dx—/ / u(?tgodex—l—/ / Vu® - Vo drdz
Rn n n
0 0 t t
:/ upp(0) dac—/ f~V<pd7'dx—|—/ / gpdrdz.
n 0 Jrr 0 Jrr

The existence of weak solutions of (2.1) is shown by Oleinik-Kalaginkov-Czou [43] and
J.L. Lions [31] (cf. Otani [44]). Our aim in this chapter is to obtain Holder estimates for
weak solutions of (2.1).

Caffarelli-Friedman [11] and Caffarelli-Vazquez-Wolanski [10] showed Holder continu-
ity for solutions of the porous medium equation (2.1). They essentially use a point-wise
estimate for the derivative of solutions given by Aronson-Benilan [2] and the comparison
principle for the porous medium equation. The Aronson-Benilan type estimate is not
known for the general case with the external force. In addition, if the equation involves
non-local effect such as the system with other equations, the comparison principle does
not generally hold. Therefore, it is worth to derive the regularity of the weak solution of
(2.1) without using the comparison principle.

(2.1)

This chapter is based on the paper [35].
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On the other hand, DiBenedetto-Friedman [20], Wiegner [51] considered the p-Laplace
evolution equation:

22) { O — div(|Vo|P2Vv) = 0, t>0,reR",

v(0, ) = vo(x), r € R".

The p-Laplace evolution equation is also the degenerate parabolic equation. They showed
the Holder continuity for the gradient of solutions to (2.2) by using the alternative method
and the intrinsic scaling argument. Misawa [33] showed the gradient Holder estimate for
more general p-Laplace evolution equations. We remark that their methods do not rely on
the comparison principle for the p-Laplace evolution equation (2.2). Roughly speaking,
the gradient of the solution can be regarded to satisfy (2.1) with f,g = 0 and it seems
possible to apply their methods for solutions of the problem (2.1). In fact, DiBenedetto-
Friedman [20] showed Hélder continuity for solutions of (2.1) with f,g = 0 and a > 1.
They mentioned the Holder continuity of the weak solution of (2.1) involving the external
force f € Lq(O, 00; LP(]R")) and g € L3 (0, oo;Lg(R”)) with % + % < 1. In this chapter,
we extend their results and for more general external forces f,g, we show the Holder
continuity for the solutions of (2.1). In addition, we obtain Hélder estimates of solutions.
Denoting the main theorem, we introduce weak L” spaces.

DEFINITION 2.2. For a domain  C R" and an exponent p > 1, a function f € L{ (Q)
belongs to LP (Q) if

1
[fllze @) = sup T/ |f| dz < 0.
K

kCS2: compact ‘K‘ P
REMARK 2.3. By the Hoélder inequality, we find LP(Q2) C LP(Q2). In fact, LP(Q) is
strictly larger than LP(€) since |z| » ¢ LP(R™) but is belonging to L (R™).
Now, we state our main theorem.

THEOREM 2.4. Let « > 1 and let u be a bounded weak solution of (2.1). Assume that
f € LU0,00; L2 (R")) and g € L%(0,00; L3(R™)) for some p,q > 2 satisfying % +5 <L
Then, for all € > 0, the solution u is uniform Hdélder continuous with respect to (t,x) in
(e,00) x R™. Precisely, there exist constants C,~v > 0 such that

Jult, 2) = u(s, )| < C(lullze(oexn
-1 1 21-1)
+ ||u||zoo((0,oo)><Rn)||f”L‘1(O,OO;L€,(R")) + HUHZOO((O,OO)XR")HQH

30-2) o
X (||U||ioo((o,oo)an)|t — 5|2+ |z —y|")

for all (t,x),(s,y) € (g,00) x R™, where v > 0 depends only on n,c,p,q and C > 0
depends only on n, o, p,q, €.

1

a >
q P

L2(0,00;Lg (R™))

REMARK 2.5. Our result is also valid forq interior Hpélder estimates for solutions. In-
deed, for f € L{ (0,00;L% ) and g € L (0,00;L2, ) with §+% < 1, we obtain

loc w,loc loc
interior Holder continuity for solutions.

w,loc

REMARK 2.6. The pressure function ©v*~! may be Lipschitz continuous (cf. Caffarelli-
Vézquez-Wolanski [10])
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FIGURE 2.1. the usual parabolic cylinder and the modified parabolic cylinder

The basic strategy to prove Theorem 2.4 is to use the intrinsic scaling argument and
the alternative method by DiBenedetto-Friedman [20]. Since they use the local oscillation
of the solution as the intrinsic scaling, it seems difficult to obtain the Holder estimate of the
solution. On the other hand, we use the local maximum of the solution as the intrinsic
scaling and we make the more exact Caccioppoli estimate. The Caccioppoli estimate
plays the important role to show the alternative method. Reconstructing the iteration
argument, we obtain the Holder estimate of the solution.

For an application, we may consider the external force as the perturbation of the
solution (cf. [41]). Applying our theorem, we do not need L? integrability of the external
force, but growth order of L? integral. Therefore, it is useful to study L? theory of non-
linear degenerate parabolic equations. Furthermore, we can exactly estimate the Holder
norm of the solution by the external force and the maximum of the solution.

The chapter is organized as follows. In section 2, we firstly give an alternative lemma
and we show Theorem 2.4 using the alternative lemma. The alternative lemma gives
either the better lower bounds or the better upper bounds of the solution. We show the
lower bounds of the solution in section 3 and the upper bounds of the solution in section
4.

At the end of this section, we introduce some notations in this chapter. For p, M, 6y > 0
and ty € R, we define open intervals I, y/(to) and Ig?M(to) by

2

2
p bo p
Lo (to) = <t0 - Ml_éﬂt0>’ fﬁf’M(to) = (to - EMl—i 7150)-

For xy € R", we define modified parabolic cylinders @, a(to, zo) and Qg?M(to, zg) by

Qpna(to, o) = Ty ni(to) X By(wo), Q4 (to, o) =I5 (to) X By(wo).
We often abbreviate the center of parabolic cylinders (g, xo). We put 9 = 1 — % — % and

2
h(p, M, w) := HfHLq(L&)(Qp,M) +w||g||L%(L§)(QP7M)
the oscillation of f in A by oscs f := sup, f —inf4 f. For a set A C R”, we denote the
n-dimensional Lebesgue measure by |A|. For an open interval (a,b) C R and an open ball
B,(zo) C R™, we call n = n(t,z) a cut-off function in @ = (a,b) x B,(zo) if n € C*(Q)
satisfies

. For a function f on a set A, we denote

nt,z) =0 a<t<b x€0B,(x) and n(a,z)=0 x € B,(x).

15



2. Alternative lemma and proof of the main theorem
We hereafter replace u® by u and we consider the following equation:
(2.3) Sue — Ay = — div f +g¢.

Let M and w be an approximated supremum and oscillation of the weak solution w,
namely

(2.4) sup u<M<3 sup wu,
Qp, 01 (to,x0) Qp,n (to,zo)
and
3
(2.5) —w < osc  u<w.
4 Qp, M (to,%0)

LEMMA 2.7 (alternative lemma). Let us assume (2.4) and (2.5). Then there ex-
st constants 0 < Og,my < 1 and oy > 0 depending only on n,a,p,q such that for all

p > 0 satisfying p° < SowM 1" h(p, M,w) "2, where h(p, M,w) := Hinq@a)(Qp,M) +

Nl 3180, 00
i) (the lower bounds) FEither if

, we obtain the following estimates:

) w
Qpn(to, 0) N {u < inf w4+ 5}‘ < 6o|Q .0 (to, z0)],

Qp, M (to,20)

where Q. (to, zo) N {u < infq, y(toae) U + ‘5”}’ denotes the Lebesgue measure on

R™*1 then we have

U(t, .1') > inf u + now fO?“ (t,l') € Qg,M(tme);

Qp, 0 (to,zo)

ii) (the upper bounds) otherwise, if

. w
vaM(to,l'()) N {U < inf U+ —} > Q0|Qp7M(t0,l'0)|,
Qp,m (to,xo0) 2

then we have

U’(ta {L‘) < sSup U — Tjow fO?" (t7 I‘) < QHBOM<t0a xO)‘
Qp, M (to,x0) 2

According to Lemma 2.7, we obtain

, 0sC u< osc  u—nw < (1—mnw
ng’M(to,xo) Qp, 0 (to,z0)

provided p"° < 5OwM_%(1_é)h(p, M, w)~z. We remark that we may take 7y < i

REMARK 2.8. We explain an advantage to use the modified parabolic cylinder. For
p < 1and M > 0, we consider

8,5ué —Au=—divf+g inQ,m.
16



Introducing the scale transform
2
- T = py,
M'—a

up,M(S;y) = %u(t,x), fp,M(S7y) = f(t,l’), gp,M(37y> - g(t,l’),

2

1 P p
as'U/;iM — AyU/p’M = — le(pr’M) -+ Mgp’M
u, which is corresponding to the assumption (2.4), we can

we obtain

in Ql-

Considering M = supg_, (t9,z0)
regard the smoothing effect of the equation as uniformly. Furthermore, in view of

M g0, st

pr =p _q p

HM La(LE)(Qu)

p 2A1-2-2) 5 - 142(1

L = M~ Ta p

‘Mgp’ L %)(Qﬂ P ”gH L3 VZZ;)(QpIVI(t()ymO))

the inequality 1 — s> 0 is the sufficient condition to ignore the external force
PrOOF OF THEOREM 2.4. We show Theorem 2.4 by temporary admitting the alter-
(0,00) x R", My = supgu and wy = M. Let

native lemma, Lemma 2.7. We put @)
0o, 9o and 1y be as in Lemma 2.7. We choose 0 < py < ¢ satisfying

—1a-
8/0 S 5OWOM0 ¢ (HfHLq(Ooo LP (R"
For (to, o) € (0,00) xR", we denote Qo = Qpq.a1, (to, o) » f1g = supg, u and pg = infg, u
Then, we find
oscu < wy,
Qo
supu < supu < My,
Qo Q

1

T _
30 < dowo M, ° h(po, My, wo)™ 2,

-

We choose

2
where h(po, Mo, o) = || |14 15 + oll9 L3@d)Qo)

n=mnda-w¥ (1) ()

and choose sequences as follows: For j € N
wj = (1 —mno)wj_1, Pj = TopPj-1,

M; = max{u) |, w;}, Q;:= Qp,.n;(to, o),

p; = infu.
i

(2.6)
{1; = supu,

J

17



LEMMA 2.9. Let {wj, pj, M;, Q;}32, is defined the above (2.6). Then for 0 < §p < 1
defined in Lemma 2.7 and for j € N, we obtain
oscu < wj,
oF

supu < sup u < M;,
(2.7) Q, Q1 J

1
1-1)

_l( 1
p;'yo < 50ijj e h(pj,Mj,Wj> 2,

PRrROOF OF LEMMA 2.9. By the definition of M;, we obtain supg, u < M;. Since
1 11
To < (1 — T]())'YO and w; = (1 — nO)Wj—ly we find p}o < 500}ij q( a)h(pj,Mj,Wj>_%. We
show oscq, u < wj.
To show oscq, u < wj, we make induction. We firstly consider the case j = 1. Either

if oscg, u < %wo, then we find Q1 C Qg since ry < (%)%(1’5) and
M, > w1

> = (1- >
M, = M, ( M) >

W] o

For this reason, we obtain

3
oscu <oscu < —wy < (1— Wy = wi.
Q1 T Qo _40_( 770)0 !

Otherwise, if %wo < oscg, u, we obtain My = wy < %ua“. Applying Lemma 2.7, we find

,. 0sc u < (1 —no)wo.
Qé’Mo(tOJO)

=

- AR 0o
Since 1y < 5| 3 %), we have Q1 C Q) Mo (to, o) C Qo and hence
2 b

oscu < , 0sc u < (1—mnp)wo = ws.
Q1 Qé’Mo(tow’vo)

In either case, we obtain (2.7) for j = 1. Next, we assume (2.7) for j < k and we show
for j = k + 1. First, we give the following inequality:

3
33 +}.
201 — 1) 7

To show (2.8), we consider the case p, | < %,u,j_l first. Then

(2.8) i, < max{

o< . < 1
Pr—1 S OSC U | S We—1+ Sl
Qr—1 3

and hence 1| < Jwy—1 = 5 wk. For the other case py_; > gy, we have p; <

3up ;< 3. < 3u; and we obtain (2.8).
We show (2.7) for j = k + 1. First, we consider the case oscg, u < %wk and we show
Qri1 C Q. Either if My = wy, then

M1 _ M1 > (1 —no)wg
M, wp W
18
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Since rg < (%)%(1’§), we obtain Qg1 C Q. Otherwise, if My =y |, we obtain by (2.8),

M1 _ M1 > M1
M, My max{ﬁwk, 3/@}
S 1
= 3 w 3 ¥
max{ 2(1-n0) Mk]jrl ’ Mi }
1 1
> > 3

3
max{m s 3}

Since ro < ( )%(1’5), we have Qr1 C Q. In either case, we have Q1 C Qr and hence

1
3

3
osc u < oscu < —wip < Wett-
Qr+1 4

Second, we consider the case wk < oscg, u < wy. Since wy, < 3/% , we obtain

3 2
+ <max{—w .3 +} <max{— .3 +} < 3u;
He—1 = 2(1 — 10) ks Ol ¢ = (l_no)ﬂk Mg (= Sty
and hence
4
M, < max{g,uz, 3/LZ} < 3u.
Hence we apply Lemma 2.7 and we obtain
0sC u < (1 —no)wk = Wiy1-

ka M, (to,r0)

. 11 1 +
Since ry < %(%)2( o) (90)2 and Mesr > % = %, we have Qi1 C Q%,Mk(to’%) and
hence

osc u < 0SC U < Wt
Qkt1 Q% (to,zo)
oMy

Remarking that M; > M, for j € N, we have

0sC u <oscu < wj.
Qp ;.M (to,T0) Qj

We choose 0 < v < 1 satisfying rj > 1 — 1. Then, we obtain

osc < (1—m)wy=wp (,0]) .

Qpj.0 (to,xo) Lo

For p < pg, there exists k € N such that pr < p < pr_1 and hence

vy v v
osc  u<uwy (pk_l) = wory | (&) < Mory” (ﬁ) )
Qp,Mo(tOVTO) 100 pO pO

19




1
2

. -11-2) 2
Taking pg > 0 as py° = dowoM, ° <HfHLq(o,oo;L€V(Rn)) + WOHgHL%(oOoL%(Rn))) ; W€
find
.

-x 2(1-1)
osc  u<CM, ™M, <‘

2 0
Qp, a1 (t0,0) ‘fHLq(va;Li’HR”)) +w°”g”L%<o,oo;L§<Rn>>> P

for p < pg where the constant C' depends only on n, a,p and q. Furthermore, if p > py,
then

o\
0SC u < My < M, (—)
Qp, My (to,0) Lo

5

-x 2 (1-1) 2 v
< OM, ™ My™ (||f||Lq<0,oo;L€v(R")) +w0”gHL%(o,oo;L§(Rn>)> P

)

1 2011
a)HfH . +M0q(1 a)Hg“ . » >p’Y
La(0,00; Ly, (R™)) L2 (0,00;L2 (R™))

Therefore, we find

VI

S1-2) 2
0s¢ WS C(MO + My <HfHLq(0,oo;L€v(Rn)) + M0||g||L%<o,oo;L§(Rn)>>

Qp, M (to,z0)

1(1_
< C(Mo M

and proof of Theorem 2.4 is complete. O

3. Proof of the lower bounds

Without loss of generality, we assume ¢, = 0 by using the parallel translation. And
we omit the center of ball xyg. We hereafter write ut = supg, ,, U, @ =infg, , u.

In this section, we show the lower bounds in Lemma 2.7. More precisely, we show the
following proposition:

PROPOSITION 2.10. Let p > 0 satisfying p7° < wM_%(l_é)h(p, M,w)_%. Assume the

inequality (2.4) and (2.5). Then there exists 0 < 6y < 1 depending only on n,a,p,q such
that if

. w
Qp,Mﬂ{u<M +§}‘ < 00| Qp,m)

where ’Qp,M N {u <pu+ %}’ denotes the Lebesque measure on R™"!, then we have

u(ta) = "+ for (t:) € Qg

To show the lower bounds, the following Caccioppoli estimate plays the important
role.

LEMMA 2.11 (the Caccioppoli estimate for sub-level sets). Let n = n(t,x) be a cut-off
function in Q, . For p= <k < p~ + %w, there exists a constant C' > 0 depending only

20



on « such that

(2.9) sup / (u(t) — k)2 n*(t) dz + ( 1_* // )_|*n? dtdx
tEIpM QpM
< C’{ // (u—k)_nomdtdx + ( 1_* // (u — k)2 |Vn|* dtdx
Qp,.m Qp,m

+ ()b h(p, M) ( [ B0 <t da)’

p, M

QU o

h

where 3 =1 + - and | B, N {u(t) < k}| denotes the Lebesque measure on R™.

PROOF OF LEMMA 2.11. Testing the function —(u — k)_n? to the equation (2.3), we
obtain

é//M at</0(u_k) (k — §)‘1§d£)n dtda:Jr/QpMV u—k)_ - V{(u—k)_n*}dtdx

- / /Q VR - / /Q gl ) e

By the integration by parts, we have

étes}u;]/ (/(um—k)(ls f)l—lfdg) dx—|—//Q )_|Pn? dtdx
//QPM</u k)~ (k—&)a 1§d§)5’t7] dtd:c—//QpM (uw—Fk)_ - V) (u—k)_ dtdx

—/ f-V(u—Fk)_n? dtdm—/ f-Vn*(u—k)_ dtdw—// g(u—k)_n*dtdz.
Qp, M Qp,M Qp, M

Using the Young inequality, we obtain

(2.10) étes?pM/ (/O(U(t)_k)_(k —f);lfdﬁ) t)dx 4 //Q )22 dida
//Q (/u " (k — 5)_1§d£)8m dtd:c+3//Q )2 | V|2 dtda

+2// |f|2772dtdx+// 9l (u — k)_n? dtdx.
Qp,]wﬁ{u<k‘} prMﬁ{u<k}

We estimate the first term of the left-hand side of (2.10). Since (2.5) and k¥ < p~ + § <
pt —oscq,, u+ % < put, we have

(k—&)at > ko=t > (uh)a™" for £>0
21



and hence

(2.11)
1 1_7 2,2
%tes?pM /Bp(u(t) — k)2 n3(t )dx—i— 4 //QpM )—|"n” dtdx
1 1 u—k)- 1
<, (/o = e o

=% // (u — k)2 |Vn|? dtdx
Qp,]VI
2t / / PP dbde
Qp7]\40{u<k‘}

_ 1
)i / / 9l(u— k)_i? dtdz
Qp’]uﬁ{u<k’}

:311—|—[2+13+[4.

We estimate I3 and I;. By the definition of the weak L space and by the Holder inequality,
we have

// |f|2772dtd:v—/ dt/ 2 da
Qp,mN{u<k} Io,m Bpn{u(t)<k}

< [N B0 {ul0) < K at

p,M

<1, 508 )(/I B, {ult) <k}|q'<%;>dt)q
p, M

o

and
// lg|(u — k)_n? dtdx = C—d/ dt/ lg| dx
Qp i {u<k} 20 JBonful<i}
w L2
< — t p B t k p dt
<5 ) @l g, 10 ) < R
Z
<— g B,N < kHIGD) gt
< Sl 3,50, (15000 < k37D ar)’
Therefore
%
(2.12) Iy + 1 < 2(u™)' "= hip, M, w) (/ 1B, N {u(t) < k}7CH) dt)
I,
Second, we estimate [;. Since
(u—h)— - w-h- g 1
| it < —atu-n- [T Se- ot ag
0 0 3

Q=

= a(u—k)_[k* = (k= (u—k))

22
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we have

o) //Q b = (= (= k) )%)(u — k) -Op? did

L (s -0

Either if 4~ < 3™, then put <w+ = and hence gt < 2w. Therefore

(u)a Ku‘ + g) : - (u‘)i] < (2w)ta (g) : <9l-aw
I < Cla)w / /Q M(u — k)_0m* dtdz.

Otherwise, if = > 1u™, then

(5 -0t [l o5

Q=

} (u — k)_0m? dtdx.

and hence

and hence
1
N A 7§<i+17§1+a<
() Ku + 2> (n) ] < 55 (17) (2u ) < Clajw.
In either case, we obtain
(2.13) I < Claw / / (u — k)0 dtdz.
Qp, M

Substituting (2.12) and (2.13) for (2.11) we obtain (2.9). O
PrROOF OF PROPOSITION 2.10. We consider the scale transform
s = Ml_ét ﬁ(s z) =u(t,z), ils,x) =ntz), f(s,x)=f(t x) and §(s,z) = g(t,z)
and we put h(p,w) := HfHLq )¢ )+w||§||L%(L§)(QP). We rewrite the Caccioppoli estimate
(2.9) as follows:

(2.14) sup/ (a(s) — k)2 7?(s) da:+ 1_é // V(@ 1°7* dsdx

s€l, JB,
1,,
// u— * dsdx + // )2 | V7|2 dsdz

+(’;211 (e (/|Bm{u><k}|qH ‘)

Qo

}.
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We take p,,q. > 0 as

2 2 2 1 1 »
i) )
q Qs n 2 p Da

We remark that —i— -+ =2 Fori e N, we take p = p;, k = k;, n = 1), satistying n; = 1
on (), , and

" 11 1
= +4W+2Z+1 pi—ﬁp—'_ﬁpv
2
Ni{u < ]{?Z 2 - ax ax
Y, = |sz {U }|’ Z; = p_(/ ‘sz N {u(s) < kz} P ds) ,
Q) Q| \ U1,
2 8.2 2 16 - 2%
’vﬁz| S S ) 88771 S 2 2 S 2 .
Pi = Pi+1 P Pi — Piy1 3p

Then, using (2.4) and (@ — k;)— < %, we rewrite (2.14) as

1@ = E3) <3l Too (22yn2 a1y,

{ // i — k)04 dsdx—i—// i — k)2 |V dsdx
) . 2 (14+20)
+ h(p,w) (/ |B,, N {a(s) < k;}|»~ ds> }
I,

22Z 2 s q%(l‘*‘z%)
scm% 210 0 (< k) 4 B (ﬂ|&uHM@<&}mw> }

2 - 2% 2
< C(a)%%{Z%Yi + h(p,w)w™2 (’g—;‘) Zl.1+TO }

Using the Ladyzenskaja inequality (cf. Proposition B.2) and the Holder inequality, we
have

(@ — ki)—ﬁi”%ﬂ(@,)i) < [[(@ = ki)~ 772HL2+

i)

< C(Oé,n)w2|Qp|Y;n+2{22iY; + E(m w) (|Qp|> " ZZH- 270 }

and

270
> = W?|Qpl | s 7 o 1Qp\ ™
16— )l 0, < Cler )™= 524 2204 B oo 2(_p> Ay

Since
I N TG 5 N

> (kl - kiJrl) |sz+1 N {u < kl+1}‘

24
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and

(@ — ki) 73| 7. (r)@py) = (T — ki) 7 (LP*)(Qpyyy (A<kis1})

> (ki — kip1)® (/1 |Bpiy NH{U(s) < kiy1}

P41
w® |Qp‘

= 64 - 22 p2 Zi+17

2
x q*
Dx ds)

we obtain
2%
Gy 1T | o2i7 o (1Qp]\ ™ 7E j1e
Yiy1 < Cla,n)q 27, +2%h(pw)w™ | =5 | YT Z
and
Q)
Ziv1 < Cla, n){Q‘“Y} + 2% h(p,w)w ™2 (p—;) Z}*a}.
Either if ¢ > p, then Z—: < 1 and we obtain

2
2 qx
Zo= L / IB,, N {ii(s) < ko}| 5 ds
i\,

2

2 2

R Px N o 2
<o / 1B,, N {i(s) < ko}|ds | p="3) < C(n,p,q)Yy",
QI \ /s,

by the Holder inequality. Otherwise, if ¢ < p, then

2 .
Zy = —,g | (/, | Bpo N {a(s) < Ko} By, N {ails) < ko}|' dS)
p 0

2 2 2
< p—|Bp0 P

— @,

Therefore, by using p° < wﬁ(p, w)_% and Lemma B.13, there exists 0 < 6y < 1 such that
if Yo <60y, thenY; — 0 as 7 — oo, i.e.

/ |Bpm{a<s><ko}|ds) < C(n,p, gV

Ing

_ o w
a(s,z) > pu~ + 7 (s,2) € Qs.

4. Proof of the upper bounds

In this section, we show the upper bounds in Lemma 2.7. More precisely we show the
following proposition:

PROPOSITION 2.12. Let 0 < 0y < 1. Assume the inequality (2.4) and (2.5). Then,
there exist ny,01 > 0 depending only on n,a, p,q and 0y such that if

P < SwM S h(p, Myw) "
25



and

_ w
Qp,M N {U <p + 5}’ > 90|QP,M|7

where |Qpp N {u <pT+ %’} and |Q,.u| denote the Lebesque measure on R™™ then we

have
u(t,x) < supu—mw for (t,x) € QGBOM.
27

Qp,m

We choose 6y as in Proposition 2.10 and 7, 71 > 0 as in Proposition 2.12. Then taking

1
do = min{l,0:}, no = min{zﬂh},
we obtain Lemma 2.7.

LEMMA 2.13. Let 0 < 0y < 1. If

w
(2.15) Qs N {u <u+ —H > 0ol @pnl;

2

then for all 0 < 0 < 6y, there exists — P < 0 < —0 ’1’2

L T depending only on 0 and 6,
such that

_ w 1—90
‘Bpﬂ{u(ﬂ)) > W +§H < -0 |B,|,

where |B, N {u(mo) > p~ + £}| and |B,| denote the Lebesgue measure on R™.

PROOF OF LEMMA 2.13. By the change of variable t = M‘l’: s, u(s,x) = u(t,x) and
the inequality (2.15), we obtain

I

M
B,N {ﬁ(s) >,u_+g}‘ ds = —5—

w
Qp,Mﬂ{U>M_+_}‘

2 P 5
M= .
= 02 (|QP7M| — |@p,m N {u <pu”+ 5}‘)

1—1

@

M
< (1= 60)|Qpaa| = (1= 6o)|B,|.

If |B, N {u(s) > p~ + ¢} > L=%|B,| for all =1 < s < —6, then

1-0
0
/.

w %
B,N {&(s) > u + EH ds 2/
-1
which is contradiction. O

2

B,N {a(s) >+ f}‘ ds

> (1= 60)|B,l,

LEMMA 2.14. There exist 1o, 0o > 0 depending only on n,a,p,q and 6y such that if
1 1
plo < 52wM_5(1_5)h(p, M,w)_%, then

pnfuose 2= (- (2) )

fort e ]gf’M, where |B,N{u(t) > p* — 5% }| and | B,| denote the Lebesgue measure on R™.

270
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PROOF OF LEMMA 2.14. We rewrite (2.3) as
dru — aul " Au = —au'"w div f + au'"ag.

Let

v(€) = 1og+<H_(§f1k)++c>,

where k := pu~+% , H := p* —k = oscq, ,, u—% , ¢:= 55 and 79 > 2 be chosen later. We
remark that ¢, ¢, " = (¢)? > 0, where ' = d%. We take the cut-off function n = n(z) as

2
n € Cy(B,), n=1o0n Bu_sy), and |Vn| < 0_,0
0

where o > 0 be chosen later. Putting w = ¢ (u) and taking the test function (%) (u)n?
in (19,t) x B,, where 7y be chosen later, we have

1 t
—/ w2772dx
2 /i,

+ Oz/t/ Vu - V(ul_i(@DZ)’nQ)) dtdx

—a/ /B f-V(u =2 () 2)) dtd:c+a/ / u' e g (2 n? dtda.

p

Since

V() = (1= B @A Vuct w2 V4l )V

1 ! 1
5/ w2n2da: + a—l// u” @ (V) |Vul*n? dtdx
BP
+a// V)| Vul®n? dtdx
B,
:—a// '(Vu - Vn?) dtdx
B,
-1) « V dtd
(2.16) (a / /Bu J(f -V dida
—i-a/ / Y'(f - Vu)n? dtdx
—i—oz// ) (f - Vn?) dtda
B,
-I—a/ / Y gn? dtdx
B,

=L+ 1o+ I3+ 14+ I5.
27
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Using the property (¢?)'Vu = 2wVw and the Young inequality, we have

¢ ¢
]1§oz// ul_fiw|Vw|2n2dtdm—|—4oz// ul_éw|V77|2dtdx,
B,
a—1 9 9
I, < 2| Vul*n dtdr + &= N f1*n? dtdz,
B, Bp
I; < — // ”|Vu]2n2dtdx—|—a// V3| f|*n* dtdz,
B/’

]4§4a// d | ||Vl deda
70 J Bp

t t
< 204/ / u' v w|Vn|? didr + 2@/ / uw () 2w| f P dede,
70 J Bp 0 Y B

P
t

I5 < Qa/ / u' s wi|g|n? dtde.
70 J By

(2.17)

Since " = (¢')?, (*)" = 2(¢")*(1 + v), we have

/ / V3| Vul|*n? dtdx
By
t 1 t 1
:2a/ / u1a|Vw\2n2dtdx+2a/ / u'”aw|Vw|*n? dtdz.
70 J Bp 0 Y B

P

Combining estimates (2.17), we have from (2.16) that

"?|Vul|® dtdz

Bp

+ a// “x |Vw?n? dide + = // ~ww|Vw|?n? dtde
B,

-1
+O‘2/ wa (Y )|f|2772dtda:

70 J By

t
+ 2« / u ()21 4 20)| f 2 dida
B,

+2a/ / ~awi! lg|n? dtdx
B,

= [6—|—I7—|—]8+Ig—|—]10.
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For simplicity, we put k' = p* — ¢ = p* — 5. First, we estimate the left-hand side of
(2.18). Since k' > k, we have

1 1
— | W t)n*(t)dr > = w?(t) dx
2 2
By B(1—og)pN{u(t)>k'}
., (=)
> — log dx
(2.19) 2 JB pppntuttsiy  NH = (K = k) +¢
1 w
> 51087 (= ) 1Boaas 0 u(t) > K]
gro—1
1
= 5070 = 3)°10g 2/ Bap (1 {ult) > '}

Second, we estimate Ig. Taking 7y as in Lemma 2.13 with 6 = 90 , we obtain

H Lo
oo (G ) <) = e D

and hence
1
I6 S 5/ w2(7'0) dﬂ?
(220) 1 Bpm{u(70)>k} 1 1 0
— Yo
S 5(7’0 — 1) lOg Q‘B N {U(T()) > /{?}| < 2 1_ 90 (TO - 1) 10g2 2’Bp’

We estimate I7. From ¢t — 75 < Mfil and the inequality (2.4), we have

2 -1
221) < a(u) (- ) - Diog2( 2 ) B, < Clo) (2 1) 1,1
oYY gy
We estimate Ig. Since
1 1 2m
!/ < < -z
¢_H—(u—k)++c_c w’
ro+1
(W) =29y < (ro — 1) log 2
and
_1
uE < kT ig(%) for u > k,
we have

t
@gC&MW—nfm*%/ / |2 dtdz.
0 J Bpn{u(s)>k}

By the definition of the weak L? space and by the Holder inequality, we have

t t
/ / |fI? dtdx < / H|f(5)!2|| p o |B,N{u(s) > k}|1‘5 ds
70 J Bpn{u(s)>k} 0 L (B,)

1 B
< Clnp)M NPy 5, W”iﬁ%.
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Using the inequality (2.5), we obtain

< Clnap) (S Py o ) (5) o= 02018,

(2.22)
)= 1)2°[B,.

< Clma ) (MDY o

Q~

1),

We estimate Iy and I19. As the estimate of Ig (more easy to estimate since ul=a < M!
we have

270 1
(223) Iy < C(n,a p)(p DI, ))2%(1 +2(ro — 1) log 2)| B,|

i,

and

270 1
(2.24) o < C(n,a,p)<p7M* “Dlg] )2”0(7*0 ~1)|B,).

(L)(@pa0)
Combining those estimates (2.19)—(2.24), we have

1—0y (ro—1\>  Ci(a) ro—1
\&mem®>HHsL_g(“ ) ol

ro — 3 0(2) (7”0—3)2
—_ = 27'0 —1
+ Ch(n, ap)<p_Mq1 (R é(@wﬂ)ﬁ
o 2270(1 4 2(rg — 1) log 2
+ Calm ) (SN 2 ) =

p20 270 (rp — 1)
+ O4(7L, Oé,p) (TMQ HgHL2 L2)(Qp M)> (’I“O — 3)2 |Bp|

Since
1B, N {u(t) > K} =[(B, \ Ba—se)p) N {u(t) > &'} + [Ba—sy), N {u(t) > £’}
< (L= (1 =00)")[By| + [B(1-a9)p N {u(t) > '},

we have

| B(1-00)p N {u(t) > K} < {1 5 (:2 = 1) p o) oty (1= (1—=00)")

1-— 070 3 0'(2) (To — 3)2

2% 1
+ maX{027 037 04}2_2M§(175)h(p7 Ma W)CE)(TO) } ’BP’7

where

B 270 (rg — 1) 2%0(1 +2(ryp — 1) log 2)
C%“““““X{<nr—m2’ (ro — 32 }

We choose parameters g,y and ds. First we choose oq = 0¢(n, 0y) satisfying 1 — (1 —
0p)" < %QS. Second, we choose rg = ro(n, a, ) satisfying

7’0—1 2 _9_ Cl<Oé) 0—1 _2
(7"0—3) —(1 2)(”90) nd = g < g%
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Finally, we choose 3 = do(n, , p, 0) > 0 sufficiently small such that
1
max{C’2, Cg, 04}05(7’0)52 S 5‘9(2)

Then, if p?7° < 52w2M7%(17é)h(p, M,w)™!, we have
2
/ 00
B0 > Ky < (1= (L) )15,

LEMMA 2.15 (the Caccioppoli estimate for super-level sets). Let n = n(t,x) be a cut-
off function in Qz?M. For k > put — ¥, there exists a constant C' > 0 depending only on «
such that

O

(2.25) sup/B( (£) = k2P (t) dw + M5 //Q o[22 dtda

te[e0 p

< C’{ // (u— k)2LOm* dtdw + M= // (u— k)%|Vn|* dtdx

2
Py

+M1ih(p,M,w)</”9 1B, N {u(t) > k}|7 G- p)dt) }
IS 0

p, M

where 1 = % + 5 and |B, N {u(t) > k}| denotes the Lebesgue measure on R™.

PROOF OF LEMMA 2.15. Testing the function (u — k), n? to (2.3), we have

1 (u—k)+ - ) | ) 2
a//Qz?Mat</0 (k"f‘f) £d§)77 dtdl’—}—/ Vu )+ V{(u k?)+77}dtdl’

//GOfV{u— +77}dtd:)c—|—//0 (u — k) n? dtdz.

p M
By the integration by parts, we obtain
(2.26)

1 (u(t)—k)+ )
— sup / (/ (k+&)a'¢ df) t)dx + // )4 |*n? dtdw
a tGIﬁOM By, \JO O

< é// (/(u_k)+(k+§)i‘1§d§)8m2dtdx—//90 (V(u— k) - ViP)(u — k). dtde
// foVu—k ndtder// (F - V) (u— k). dtde

p M

// k) n* dtdx
Q%

p,M

=L+ 1o+ I3+ 14+ I5.
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By the Young inequality and k& > ™ — ¢, we have

I <5 // V(u—k)4’n° dtdﬂc+2// (u — k)3 |Vn|? dtdx,
Igg—// IV (u — k)4 [*n? dtda:+// | fI*n? dtdw,
4 60 Qif’Mﬁ{u>k}
I < // (u — k)3 |Vn? dtde + // | fI*n? dtdz,
OMﬂ{u>k}
I5 < // \g|n? dtdz.
2 Qp?Mm{u>k}

We estimate the first term of the left-hand side in (2.26). Since

(2.27)

(k —I—E)é_l > et > (,u+)é_1 > Mot for 0<¢E< (u— k)4,

we have

(u(t)—Fk)+
(2.28) / (k-+ &) de > SME ult) — ),

Finally, we estimate ;. By (2.5), we have

gtz (e -3) < ()

and hence
1 éf
(2.29) L <—(= // (u— 8t77 dtdzx.
2 o
p M
Combining of those estimates (2.27), (2.28) and (2.29), we obtain
M="" sup / (u(t) — t) dx + // k). |*n? dtdx
telﬁo By

< Cla { // (u — k)2LO* dtdx + // (u — k)%|Vn|* dtdx
O
+// |f|2n2dtd:v+—// |g|n2dtdx}.
QZ?Mm{u>k} 2 z?Mm{u>k}

As the same argument of the proof of Lemma 2.11, we have

1 1 ?
Pt dtda < || / 1B, {u(t) > K[7G Dt |
//QZ?MH{“>IV} H HL2(L§ 1@ B ) IE?M ’
dtdx <
//Qf,?Mm{wkz} gl Io] LA L3)@) (/190

p, M
Substituting these estimates, we obtain (2.25).

NS

1B, N {u(t) > k}7G) dt)
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LEMMA 2.16. Let py = %p. For 0 < v < 1, there exist qy, 61 > 0 depending only on
n,a, p,q,00 and v such that if p7° < 52wM7%(1fé)h(p, M,w), then

w
+
‘QPOM U > _2q0+1}‘ ‘QpOMl
where |Q23,M N{u>p" — 52} and |Q22,M| denote the Lebesque measure on R" 1.

REMARK 2.17. We obtain the estimate of (51 as

1

0 <6 Zoa,
PROOF OF LEMMA 2.16. We fix ¢ € 1%, and set
Y R
l_:u 2j+1’ k_,u 2]7

where j > ro and the constant rg is given by Lemma 2.14. By the Poincaré type inequality
(cf. Proposition B.4), we have

C(n)pg ™
| Bp N {u(t) <k} Jp, nr<utt <ty

and Lemma 2.14, we have

5771 Beo N {u(t) > 1} <

23+1 |Vu(t)| de.

Since k > ut —

2T0

[ Bpo N {u(t) < K} = [Bpo| = [Bpy N {u(t) >k} > (9 ) | Bpol

and hence

C
(2.30) By, N {u(t) > 1] < ()0 / Vu(t)| dz.
2/ % JB,nik<un<ty

Integrating over I o for (2. 30) we obtain

Po
N{u>1 < / / Vu(t)| dtdx
2]+1 |Qp0 M { }| 02 Bpom{k<u <l} | ( )|

C(n)po

1
< 02 ”V( )+||L2(Qi |Qp0Mm{k<u§l}|2
We estimate ||V (u — l{:)+||L2(QeO - Let = n(t, z) be a cut-off function in QzOM satisfying
M K
8 10M' =
=1 Vn| < — d on< —.
n=1onQ% ., | nl_p and - O < =55

Then, by the Caccioppoli estimate (Lemma 2.15), we have
9 - ’f>+”iz<ng,M> < V(=

+n"iz(Q90M)

{//e w— k)2 (V2 + (uh)a o) dida

p M

+ hip, M,w) (/I

p, M
= ]1 + [2.
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B, N {u(t) > k|7 G Mt) }



We estimate [;. By the inequality (2.4), we have

1 ]\41_l 1
< _ + E—l 0o
< ) - 12 (5 + o 0 )i
1—=

<o) s (M) il < c)(2) Gl ul

We estimate I5. Since

(2.32)

U

o, M
2 2
<18, |1(92“ M’i_l)"
ClBl (B2
2 2 _q
CllB) 3 (2" @

21y (2\7 2\ 1
gc@,p,q)(pwm a>(5) eé)gp ( ) @ el

we obtain

o200 (2 g8 L
(233) ]2 S C(n7a7p7 Q) P M “ J 90 h(p,M w) 0 ’on M|
Substituting those estimates (2.32) and (2.33) for (2.31), we obtain

- 2
IV = ks

21y (27 2 1
< C(na,p.q)(1+ " M0 a>(;) O h(p, M) 5= ( ) Qf.a

and hence

(2J+1> |on N {u > 13
C(n,a,p,q) ((w 2 9 21 21\? 2
< T oA Y0 q P - q
< 7 5 (1 + p M - 65 h(p, M,w))
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Summing over ¢ =rg+ 1,...,qy, we have

q0

2.

i=ro+1

2
L, w
onMm{u>“ _2i+1}‘

C(TL,OZJ% Q) 0o o 20 1 p2(1—-1) 27 2 %
S 95 |on,M| E , (1 +p O M m 05 h(p, M, w))
0

1=ro+1

w W
X onMﬂ{u §<USM+—21~+1}’

C(n,a,p, 21y (20)* 2
S w’@po M’(l‘l’p?yoMq(l Q><:) eq h(paM w)>
x>
i=ro+1

C(n,a,p, 20\* %
< w@ 0l <1+p2”°Mq( a)(j) 05 h(p, M, W)>-

0 + w + w
ng,Mﬂ{:u _§<USM _2“_1}'

We take gy > 0 enough large such that

ZC;(n,oz,p, Q> S 1/2.
90(‘]0 - 7’0)

Since

) w 2 o 2

+ +
ZlQﬂoMm{u>'u _2i+1} Z(qo_TO)QPOM {u>u _2qo+1} )
1=ro+

we have

> 20(n,a,p,q)

2
05 (g0 — 7o) | pO’M|

< VQ‘QpQ,M‘2

n w
Qe {u>n' - o)

2
/

provided p?© < min{f, ¥ 22® (52}w2M 1= h(p, M,w)~!, where 6, > 0 is given by
Lemma 2.14. Taking 67 := min{6, ¥ 272% 2}, we obtain Lemma 2.16. O

PROOF OF PROPOSITION 2.12. This argument is same as the proof of Proposition
2.10. Let 0 < v < 1 be chosen later. We take §; > 0 and ¢y as in Lemma 2.16. We
introduce the following scale transform

s = M'"at, i(s,x) = u(t,z), i(s,z) =nt,x), f(s,x) = f(t,z) and §(s,z) = g(t, x).
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Then, using (2.4), we can rewrite the Caccioppoli estimate (2.25) as follows:

(2.34)

sup / (0(5) ~ K5 do + /] [V R s
a){//on (i — k)i{ (%)1_;‘85772 + |w;|2} dsdx
#htp)( [, 1B tite) > k4 d)}

a>{ / /Q NS k)i{asff ¥ |w;|2} dsda

2
+ h(p,w) (/190 |B, N {a(s) > k}’q’(%*%) ds) a
P

Q\

——

where 2p.) = [z yian + 190,318,

We take p,,q. > 0 as in the proof of Proposition 2.10 and for ¢« € N we take p =
pi, k= k;, n =, satisfying ; = 1 on Qp ., and

b — 1 B 1 1
= _%+2qo+z+2w Pi= 5P T izl
1/;: = |sz {90 }’7 Zl £ (/ |BPz N {U( ) > kl} gj d8> ' )
[0 Q%
2 12 .2 4 1 48 - 2%
|Vﬁl| S S 5 05771 S P S 5 -
Pi — Pit1 Po to Pz Pit1 Oop

From (2.34) and (2 — k;)4+ < 5357, we obtain

|(@ — ki)—i—ﬁiHioo(L?)mL?(Hl)(Q%)

{//90 ki) { i + [Vl }dsdg;
+ﬁ(p,w)(/l% B, {i(s) > kG a )}

Pi

gc<a>{(2%)2(910 D210 0 i k)

2 27
o qj(H‘TO)
P+ ds

scm,eo)’i%g (%)2{2213/%@, )(25)0) (‘ig ) zj“m}.
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1

/

Since §; < 9 7271 we have

0

(2 (1) < ot

and hence

. |Q | (o 1420
H(u >+771HL°°(L2 NL2(HY)(Q Z(i)) < C(n Q p7Q790)<2qO> 00 {2 Y + Z }

By the Ladyzenskaja inequality (Cf Proposition B.2) and the Hélder inequality, we have

~ ~ 112 ~ 2
|Q I 14220
<C .q,0 ( ) Y”“{QQZY Z, }
(n, @, p, 4. 60) 5, pe +
and
- | O (oo 1420
1= k) gy < Clmoapia ) () A2V 27
Since
H(ﬁ’ - ki)+ﬁi|@2(@gg) > H(ﬂ - ki)+‘|iQ(Qi?+1m{ﬁ>ki+l})
> (b = K1, N> s} = s ) Qi
and
~ g ~ 112 > ~
1@ = R il (1 ey 2 118 = Fid [ (@00, {a>kii1})
w Q%
Z <2qo+i+3) ,00 Z’L+17
we obtain ) -
12 270
Vi1 < C(n, o, p, q, 90){2413/; Tt + 22@yn+2 Zl+ }
and

) ) 27
Zis < Cln,a,p, .00 {2 + 222 |

As the similar calculus in the proof of Proposition 2.10, we obtain

C(n,p,q,0)Y, if ¢q>p,
7 < (n,p,4,60)Y5 q>p

2
C(n,p,q,00)Yy" if q<p.

Therefore, by Lemma B.13, there exists 0 < v = v(n, a,p, q,0y) < 1 such that if Yy < v,
then Y; — 0 as 1 — o0, i.e.

5 w
s, x) < - ootz A& (s,x) € Q%O

By Lemma 2.16, we obtain the upper bounds of w. O
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CHAPTER 3

Regularity and asymptotic behavior for the Keller-Segel system
of degenerate type with critical nonlinearity

1. The Keller-Segel system of degenerate type

We consider the large time behavior of the global solution of the degenerate parabolic
elliptic system:

Oyu—Au® + div(uVy) = 0, t>0,r€eR",
(3.1) —AY 4+ = u, t>0,recR",
u(0,2) = () > 0, reR",

where av > 1. This system is described as the dynamics of the chemical attracted mold.
The equation originally consists of two reaction diffusion equations. By taking the zero
relaxation time limit, one can obtain the above form as the result. For the case of a =1,
it is semi-linear problem and the system (3.1) is analyzed by many authors. For o > 1,
the problem (3.1) is degenerate parabolic elliptic system and there are some work on
it (Biler-Nadzieja-Staniczy [7], Diaz-Galiano-Jiingel [16, 17|, Luckhaus-Sugiyama [32],
Ogawa [39, 40], Sugiyama [46], Sugiyama-Kunii [48]). On the other hand, the system
has a strong relation with the variational structure and the large time behavior of the
solution is really depending on the variational functional reduced from the entropy-energy
inequality.
Whd(t) = el - 5 [ atu®)do < Wil

Then it appears that there exists a critical exponent @ = 2 — % that the global behavior of
the solution is changed. This exponent is considered as a threshold exponent to separate
the global stability of the weak solution. Roughly speaking, the small solution with small
initial data decays as t — oo. Then the main concern for this case is its asymptotic
profile. By the self-similar rescaling, one may find that there appears some particular
profile in its rescaled form. On the other hand, the equation is degenerated and it has
some hyperbolic like feature in its weak solution when the solution meets zero. In this
case, the regularity breaks down and the behavior is governed by the hyperbolic like
structure. The most possible regularity for the weak solution is generally known as the
Holder continuity. Indeed, to show the asymptotic profile of the decaying solution, the
regularity of the weak solution plays an important role.

In this chapter, we consider the regularity problem of the system (3.1) and apply
it for the asymptotic stability of the decaying solution in the critical case and show its
convergence rate for the asymptotic profile if it is rescaled in the self-similar way. Since

This chapter is taken from the paper [41] which is the joint work with Professor Ogawa.
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the equation is degenerated, the smoothness of the solution is not generally obtained and
we necessarily consider the weak solution.

DEFINITION 3.1. Let a > 1. For non-negative initial data uy € L'(R") N LY(R"™), we
call (u, 1) a weak solution of the system (3.1) if there exists 7' > 0 such that
(1) u(t,z) > 0 for almost all (t,z) € [0,T) x R™;
(2) we L>*(0,T; LY R™) N L*(R")) with Vu® € L*((0,T) x R");
(3) w satisfies (3.1) in the sense of distribution, that is for any ¢ € C*([0,7]; C5°(R™)),
we have

(3.2) / u(t)g(t) de - / ug6(0) da

t
= [Cdr [ {u(naio(r) - Vur(r) - V(o) + ulr) V() - Volr)} do
0 R7
for almost all 0 < ¢ < T, where ¢ = (—=A + 1)~1u is given by the Bessel potential.

We may obtain the time local weak solution of (3.1) by some approximating procedure.
Then the existence of time global weak solution is classified by a threshold exponent
a=2— % We summarize the known results for the existence and non-existence of time
global weak solutions.

PROPOSITION 3.2 (Biler-Nadzieja-Staniczy [7], Sugiyama [47], Sugiyama-Kunii [48]).

Let n > 3, a > 1 and assume that ug € L'(R™) N L*(R™). Then there exists a weak
solution of (u,v) of (3.1) that satisfies for 0 <t < T,

()| 21 @ny = [Juoll 1),
(3.3) t a 2
W (t) —i—/ / u(T) - 1Vu“’1 — V| dxdr < W(0),
0o Jrn -
where
1 a 1 _1 2
W(t) = — lullfe@ = SI(=A+ )72 ul)lz2 @

In addition:

(1) If « > 2 — %, then for any initial data ug the solution exists globally in time and the
solution is uniformly bounded.
(2) For 2 — ni” < a <2—2 and the initial data satisfying W (0) > 0 with
— y—atl _
(3.4) o | i amy W(0) e < ClI Byl L

Tty 9
L3 ()

then the weak solution exists globally in time where E,, is the fundamental solution of
—A+1 in R, L (R") is the weak Lebesque space and v + 1 = —251=2,

a—2 n
(3) In particular, if o =2 — 2, then the above condition (3.4) is given by
2 2n
3.5 N Bt .
(35) il < g Bl e,

(4) If 1 < o < 2— 2, and the initial data vy € L'(R™) N L*(R™) with |z|*uy € L*'(R™)
satisfies W (0) < 0, then the weak solution blows up in a finite time T in the following
sense:

limsup ||u(t)||Loarny = 00 for all a < g < o0,
t—T
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By Proposition 3.2, the weak solution to (3.1) exists globally in time when n > 3,
2— ni—&—2 <a<2-— % and the initial data is sufficiently small. When we consider the small
data problem, then system can be regarded as the perturbed problem from the porous
medium equation:

ow — Aw® =0, t>0,reR",
(3.6) n
w(0, z) = wy(x), r € R".
For the porous medium equation, there exists an explicit solution called the Barenblatt-
Pattle solution

DEFINITION 3.3 (the Barenblatt-Pattle solution). For o« > 1, we set 0 = n(a—1) + 2.
For some A > 0, the function % (t) defined by

1

_ o) 2 Ca-1 [z o
(3.7) Y(t,x) = (1+0t) (A — (1+gt)3)

is called as the Barenblatt-Pattle solution, where (f(¢,x)); = max{f(¢,x),0}.

It is well-known that the Barenblatt-Pattle Solutlion solves the porous medium equation
(3.6) with the initial data wo(z) = (A — %[*) 7.

In the case a < 2 — %, and the initial data ug is small, then we may regard the non-
linear term div(uV) in (3.1) as a small perturbation and we speculate that the solution
(3.1) asymptotically converges to the solution of the porous medium equation. In fact,
Luckhaus-Sugiyama [32] showed the asymptotic behavior of the solution in L spaces for
1<a§2—%,n23and1 < p < 00. Ogawa [40] showed that if 1 <a<2—%,thenwe
obtain the algebraic convergence rate of the solution in L' space via the argument due to
Carrillo-Toscani [15] and the critical Sobolev type inequality (cf. Ogawa-Taniuchi [42]).
Namely, for 1 < o < 2 — 2 and W(0) > 0 with (3.4) then there exist v > 0 and C' > 0
such that

(3.8) [u(t) =% ()|l r@ny < CL+E)7, >0,

where 7% is the Barenblatt-Pattle solution with [|%(0)||1 = ||uo]l:-
In this chapter, we show the same asymptotic convergence in L'(R") for the critical
case @ = 2 — % Our main theorem is the following:

THEOREM 3.4. Let v = 2—2 and n > 3. Assume that ug € L*(R")NL*(R") satisfying
W(0) >0, (3.5), |luolls <2 and |x|%uy € LY(R™) for some a > n. Then, there exist C' > 0
and v > 0 such that the corresponding global weak solution u of (3.1) satisfies

(3.9) u(t) — % ()| rwny < C(L+0t)™", t>0,
where % is the Barenblatt-Pattle solution with |2 (0)|1 = ||uol|1-

To show the asymptotic stability of decaying solution, we necessarily consider the
regularity of the solution. Indeed, the weak solution to the degenerate problem (3.1) has
a hyperbolic feature in it when the solution meets zero. In this case, the equation lost
the parabolic behavior and the solution behaves as if it is a solution of the hyperbolic
equation. In the proof of Ogawa [40], the Holder regularity is used essential way to show
the asymptotic stability estimate. To see this, we firstly introduce the forward self-similar
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transform, which plays an important role in studying the asymptotic behavior of the
solution. We introduce the forward self-similar scaling (', 2’) as

x

(1+ot)s’

where 0 = n(a — 1) + 2 and the forward self-similar transform (v(t', '), ¢(t',2’)) as
ot 2') = (1 +at)rult,z), ¢, 2") = (1+at)-(t,z).

Then, the forward self-similar transform (v, ¢) satisfies the following degenerate parabolic
elliptic system:

1
t'==log(l1+ot), 2'=
o

Opv — divy (Vo™ + 2'v — e_”t/vv$/¢) =0, t'>0,2" € R",
(3.10) —e Ny + ¢ =, t'>0,2 e R",
v(0,2") = up(z") >0, ' e R,

where Kk = n+2 — 0 = n(2 — «). The weak solution of the system (3.10) is similarly
defined as in the case for (3.1).
For 1 < p < oo, we obtain
ne_1
(3.11) (L+ot) = fu(t) = 2 ()], = llo) = VIl

where

1
1 a1 .
V(') = <A - \x’|2) =1 +ot)-%(t,x)
2a n
is a self-similar profile of the Barenblatt-Pattle solution. If p = 1, then equation (3.11) is
rewritten by
lu(t) = % (Bl = llo(¥') = V1.

For the sake of obtaining the convergence rate of the solution in L', we show the

convergence rate of the forward self-similar transform in L' space. Ogawa [40] showed

that if the self-similar transformed solution v is the uniformly Holder continuous, then we
obtain the exponential convergence rate of the self-similar transform v. More precisely,

PROPOSITION 3.5 (Ogawa [40]). Let o« = 2 — 2. Assume that an initial data ug

satisfies W(0) > 0 and (3.5). If the corresponding forward self-similar transform v is
uniformly Holder continuous, then there exist v > 0 and C' > 0 such that

(3.12) [o(t') = ¥l p1y) < Ce™, >0,
where ¥ is the self-similar profile of the Barenblatt-Pattle solution with || V|1 = ||uol|1-

Our main concern is to obtain the algebraic convergence rate of the solution in L'
space for the case of critical exponent o = 2 — % The reason why the critical case is
excluded in Ogawa [40] is because the uniform Hélder continuity of the rescaled weak
solution v(t', ') is required for proving algebraic convergence rate. The Holder continuity
was obtained in Ogawa [40] for v(#',2") via the rescaled weak solution u(t,x) and hence
it was not the uniform estimate for (¢, 2"). By this argument, the critical case has to be
necessarily excluded since the decaying factor e~*~2* disappears in the crucial estimates.
To cover the critical case, we necessarily derive the uniform Hoélder regularity of the

rescaled solution v(t', ') directly by assuming that the moment of the solution is uniformly
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bounded in time. Using Theorem 2.4 in Chapter 2, we obtain the following regularity
result:

THEOREM 3.6. Let (v, ¢) be a weak solution of the rescaled Keller-Segel system (3.10)
in (u,v) € L(0,T; L* N L*) x L=(0,T; W?%). Assume that |x|"uy € L*(R™) for some
a>n. Thenv(t',x') is uniformly Hélder continuous. Namely, there exist constants C' > 0
and 0 < v < 1 such that for any (t',2") and (s',y') € (1,00) x R™, we obtain

[ut’, o) —u(s',y)| < C(t' = |2 + |2' =y |").

To show Theorem 3.6, we put f = z/v — e "0V, ¢ and apply Theorem 2.4. The
integrability of x’v is essential. Thanks to the uniform moment bound for the weak
solution, we may apply Theorem 2.4 with the external term div(z'v — e~"**vV¢). From
the uniform Holder continuity of v, we may derive the convergence rate of the solution.

This chapter is organized as follows. In section 2, we study some properties of the
forward self-similar transform. Using these properties, we show uniform Holder continuity
of the rescaled solution. In section 3, we consider the asymptotic convergence of the weak
solution of (3.1) by using the uniform Holder continuity of the rescaled solution. We
compute the time derivative of the free energy functional.

2. Forward self-similar transform

In this section, we show the time decay of the global weak solution of the degenerated
Keller-Segel system. This is originally shown in Sugiyama [46] however, we present the
method of rescaling which is shown by Ogawa [39].

2.1. Rescaled equation. We introduce the new scaled variables (¢, z’) as

1
(3.13) t = glog(l +ot), o= ° -,

(1+ ot)
where 0 = n(a — 1) + 2 and introduce the new scaled unknown v(t', z’), ¢(t', 2’) as
)
( )

1+ ot)
)

n (1
u(t,z) = (1+ Jt)_av(— log(1 + ot),
o

NE

ot ) = (14 Jt)_ggb(élog(l +ot),

Q=

(1+o0t)
or one may write as

(1
v(t' 7)) =e"u <—

g

(e”t/ —1), $,€t/) ,

o

o(t', ) = e”tlzﬁ(l(e”t/ — 1), x’et/)

The resulting scaling equation of (v, ¢) follows by setting Kk =n+2 — o =n(2 — «a),

Apv — divy (Vpv® + 2'v — e " oV,¢) = 0, t>0,2 e R",
(3.14) —e ' Npd+d=v, t'>0,2 € R",
v(0,2") = ug(2") >0, ' e R™

43



In this case, the vanishing exponent as before can be found as o« = 2 by
0O=0—-n—-2=n(a—2)

and thus the sub-critical case is corresponding to a < 2. Hereafter we analyze the above
rescaled equation (3.14) to see the asymptotic behavior of the solution. We slightly change
the outlook of the solution as follows:

The existence of the weak solution of (3.14) may be proven by a similar way to the
original equation. Indeed, the scaling does not change any analytical feature of (3.1)
except the weighted restriction such as v € C'((0,T); L* N LL(R™)) for a > 2. Similar to
the original system, we consider the approximated system by the parabolic regularization:

Apv — divy (Ve (v + €)% 4+ 2'v — e "0V ¢) = 0, t'>0,2" e R",
(3.15) —e 2 Nyt + ¢ = v, t'>0,7 € R,
v(0,2") = up(a") > 0, ' e R™

Namely, we again consider the nonnegative weak solution v(#’, z') as before. Note that for
the construction of the weak solution, we need to use the diagonal argument obtaining
the weak solution (u,) and (v, ¢) simultaneously, since we do not know the uniqueness
of the weak solution.

2.2. Rescaled uniform bounds. The following estimate is a direct consequence of
the above a priori bound of the rescaled solution.

PROPOSITION 3.7. Let 1 < o < 2—2 and (v(t), ¢(t)) be a weak solution of (3.14) for
the initial data ug € LY(R™) N L= (R"). Assume that

(3.16) ol W (0) 7 < Cll B L,
Ly~
forl<a<2-— % and v+1 = ﬁ”T’Q, where E, is the fundamental solution to —A + 1
i R™, and C' > 0 is the constant in Proposition 3.2. Then
(1) we have
lo(®)lly < C

foralll < g < .
(2) for all -5 <r < o0,
Vo)l < Ce'.

Once we obtain the above uniform bound for the rescaled solution, we can immediately
obtain the time decay estimate for the solution of the original equation.

(3.17) / vt 2") da’ = / " V(¢ 1) do = (1 4 Ot)z(q—l)/ uwi(t, ) de

n

in the original variables (¢,z). Hence we obtain the following decay estimate for the
original solution as the corollary of Proposition 3.7.

PROPOSITION 3.8 (Ogawa [39], Sugiyama [48]). Let ug € Li(R™) N L>®(R™) and let
(u(t),1(t)) be a weak solution of (3.1). If1 < a <2 — 2 with small initial data (3.16),
we have

u(t)]l, < C(1+ ot) 5070
for all1 < q < cc.
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2.3. The moment bounds. The last part of this section, we show the second mo-
ment of the weak solution remains bounded for 0 <t <T.

PROPOSITION 3.9. Let ug € L*(R™) N L*(R") with |z|*uy € L'(R™). Then the weak
solution (v, @) of (3.14) satisfies

/ 2(n — 2
(3.18) |2/ Po(t) de’ < e ™ |2’ |?uo da’ + MWS(O),
Rn Rn
where
/ 1 oyl / 1 712 / / 1 —kt! / / /
W(t') = v () de" + = | |2 o) de" — = [ e o(t)e(t) da'.

Namely, |2'|?v(t') € L*(R™) for almost all t'. In addition, if we assume that ug € LL(R™)
with a > 2, then we have

(3.19) || %0 (t') da’ < e= 2’| ug dx’ + C.
R™ R"

PROOF OF PROPOSITION 3.9. We only give the formal proof. It can be justified
some appropriate cut-off and approximation procedure. To show (3.18) we test |2/|? to

the equation and we see
(3.20)

d /
7 |2/ Po(t) d’ = 2n|lv()||* =2 | |2/[Po(t) do’ + 2™ / (2'v(t') - Vo(t')) da'.
Rn R”l

n

We invoke the Pokhozaev identity for the second equation. We multiply the elliptic part
of the system by the generator of the dilation x - Vi and integrate it by parts. Then it
follows

[ @) vow) dar = e (1 - g) | weipar =3 [ o i
= (1-5) [ o)~ ol

Combining (3.20) and (3.21), we obtain

(3.21)

(3.22)
% . 12/ |v(t') d2’ +n . 2’| ?v(t') da’
= 2n[lo(t)|l5 + (n —2) |$W20(f)d$/%—(2'—'n)€Kﬂﬁ/n (t)(t') da’ — 2~ o(1) I3
i—2+%

< 2(n— W, (1) + 2n( ) It 2 — 26~ (") 2.

-1
Thus under the condition a < 2 — %, we see that

/ 2(n —2
|2/ Po(t) da’ < e ™™ |2 Pug da’ + An=2)
Rn R™

W(0)(1 —e).
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For further weighted estimate, we modify (3.20) to have
d
(3.23) —/ |z’ |v(t) dz’” + a/ || (t") da’
dt’ Jgn n

=a(n—2+a) / |2/ |22 (') da’ + ae™™" / |2'|*2a"v(t') - Vo(t') da'.

n

It follows that

d [ .
% |:eat . \x’\“v(t’) dl'/:|
<a(n—2+a)e @)t [ |2 20(t) de’ + ae” ||Vl [ |2 o da.
R Rn
By the uniform boundedness for ||v(t')]lee, €' [|V®|loe (Proposition 3.7) and the lower
moment bounds implies that

(3.24) 2ot da’ < e / 12/]0(0) da’ + C.
RTL

n

O

PrROOF OF THEOREM 3.6. By Proposition 3.9, we obtain yv € L*>(0,00; L*(R"))
and by Proposition 3.7, we have e " vV € L=((0, 00) x R"). Since a > n, we can apply
Theorem 2.4 and we obtain the uniform Hélder continuity of v in (1, 00) x R™. O

3. The asymptotic profile

In this section, we show the asymptotic convergence of the weak solution u(t,z) of
(3.1) to the Barenblatt-Pattle solution by using the uniform Hélder estimate.

To show the convergence rate, we consider as we mentioned in the introduction that
the self-similar transform of the system and the weak solution of the rescaled system:

Apv — divy (Vav® + 2'v — e oV,e) = 0, ' >0,2 € R",
(3.25) —e ANy + ¢ =, t'>0,2 € R",
v(0,2") = up(z") >0, ¥ € R",

where k =n+2—0=n(2 — «).

In what follows, we only treat the scaled system (3.25) and hence we use a simpler
notations as t' — t and &’ — x if it does not cause any confusion.

Applying the method of the Fokker-Planck equation due to Carrillo-Toscani [15], we
compute the time derivative of the free energy functional: For a weak solution (v, ¢) of
(3.25), we let

Ho(t)) = — /nva(t)dx+%/n|x|2v(t)dx,

v(-2 vo‘_l(t)—i-@ 2
a—1 2

(b)) = /nv(t) ‘v( RO +g —e"“qb)




The key idea to show the asymptotic behavior is to consider the decay of the dissipative
flux term I(v) in t. We firstly observe that the entropy functional has a certain relation:

PROPOSITION 3.10. For a weak solution v and ¢ of (3.14), we have

(3.26) H(v(t)) ( et IIV¢()II§+6‘“|I¢(t)II§)

e TV g(r )II§+56_”T||¢(T)||§+J(v(7))) dr

TN -

+
§H<v<s>+§< ST+ e NoE) + [ e dr [ Ve

In particular, for 1 < a < 2— 2, we have that H(v(t)) is uniformly bounded in t under
the smallness condition (3.16) and

(327)  H(0) < Hw) + 5 | 9(0)0(0)dz +Csup e o(r) o IVo(7) 3]

2

for any t > 0.

REMARK 3.11. The restriction of the exponent o < 2 — % follows from the restriction
on k > 2 in view of the integrability of the third term of the right-hand side of the above
inequality.

PROOF OF PROPOSITION 3.10. The equation (3.14) can be rewritten as the following

form:
BT « a—1 |w|2 _ —kKt _
O — div <UV (a —Y (t) + — e o) |=0.

Testing 250~ 1(t) + % + e "¢, we see that

OH((E) + e [ 60w de + J(v(t)) = e%t/ o[ V|2 dz.
Rn n
Since
powdr = e " 0, (—e ' Ag + ¢) dx
Rn R™
=e " [ Vo -V(0(e*¢))dr + e”t/ $O dx
RTL n
_ la —(k+2)t )77 412 —rt(| 4112 K—2 _(egoyn v o—rit
— Lo TP + ) + B2 TS + Kool
we obtain
1
328) 0 (HO() + 5 |Tol} + 6_%”3))
K—2 e~ F —2kK
B2 DTGl 4 el + J(w(e) = e [ olVof do.
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Integrating (3.28) over [s,¢] we obtain (3.26). Under the condition 1 < a < 2 — 2, we
have x > 2 and by Proposition 3.7 e % ||v(t)||oo||[V(¢)]|5 < C. Therefore it follows

1
: igg(e‘Ztllv(t)IIMIIVQS(t)||3)

K —

H(w(t)) < H(w(0)) + 5[0 + I6(0)]] +

< HEO) + 5 [ 00)6(0)dz + Csup(e > o(r) |« [VH(r)IB)

for all ¢ > 0. O
For a solution v and ¢ of (3.14), we let

K(z,0(t),6(t) == V (Lv@—l i e_”tgzﬁ)
T - \a-1 2 '
It is not so difficult to see that the asymptotic profile is given by J(v(t)) — 0 from
the above inequality. However to obtain the convergence rate for a weak solution in the
weighted class L1 (R™) N L>°(R"), we derive that I(v(t)) is exponentially decaying. To
this end, we observe the time derivative of the functional I(v(t)). We assume that x > 0
namely a < 2.

Following Carrillo-Toscani [15], we formally have

(3.29)
d

1) = 2 / oK (2,0, 6)dx — 2(c — 1) / o div K (v, 6)[2 da

—2/ UQ|VK($,U,¢)|2d$+2€_“/ vKi(z,v,0)K;(x,v,$)(0;0;¢) dx

n

—1—26“/ div(vK(az,v,qﬁ))@@dm—Zme”t/ vK(z,v,0)Vodu.

n

Since the weak solution does not have enough regularity, the above identity is not nec-
essarily valid and the actual estimate should be obtained in the form of the integral
inequality. This is justified by an appropriate approximation: Let (v, ¢) be a solution of
the regularized system:

O —div((v + &) K.(z,v,0)) = —e(e " *(v—¢) +n), t>0, v €R",
(3.30) —eHNp+ ¢ = v, t>0, x€R",
v(0, ) = up(z), r e R",

where

Keleolt).00) = ¥ (w2 4+ 1 o).

Note that the above system (3.30) is equivalent to (3.15). The existence of the smooth
and sufficiently fast decaying solution at |z| — oo of (3.30) is obtained in a similar manner
in Sugiyama [46].

PROPOSITION 3.12. Let ( be a smooth cut-off function such that { = 1 in Br and
whose derivatives are supported in Bog \ Br. For a solution v and ¢ of (3.30) belonging
to L', we let

L(u(t)) = / o(t) K.z, 0, 6)[? 2 da.
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Then we have

L)< -2 [ 0+ e 0P

n

—2(@—1)/ (v + )| div K.(x,v, ¢)|*¢* dx

(331) 2 [ (04 O IVE.(0,0,0) ¢ d

+ 26_’“/ v(D*¢K.(z,t,0) - K.(2,t,0))(* dx

+ 2e~ (K=t ’UKg(x, v, ¢)|2C2 dx — 2ke™" / UKa(xv U, ¢)V¢CQ dx
Rn

+ E[(.T, v, ¢a &, VC)v

where Er(z,v,¢,e,V() denotes the error term and it will be vanishing when we take the
limit R — oo and € — 0.

The derivation and rigorous treatment of (3.31) is given in Appendix of [40]. We
proceed to the following.

PROPOSITION 3.13. Let (v, ¢) be a weak solution of (3.14). Then under the condition
1 < a <2-—2 and the solution v has uniform estimate sup,-q ||v(t)]| < Co for some
constant, there exists Ty > 0 such that for any Ty < t,
t

(3.32) T(w(t)) + / I(o(r)) dr < I(o(Ty)),

To
in particular, there exist constants v, C' > 0 such that
I(v(t)) < Ce™
fort > Ty.
To obtain the above proposition, we need the following two ingredients. First one is the

Sobolev type inequality in the critical type originally due to Brezis-Gallouet [8]. This is the
generalized version obtained in Ogawa-Taniuchi [42] and Kozono-Ogawa-Taniuchi [28].

PROPOSITION 3.14 (Kozono-Ogawa-Taniuchi [28], Ogawa-Taniuchi [42]). There exists
a constant C' depending only on n such that for f € L*(R™) N C7(R™), the following
inequality holds:

(3.33) 1flloo < CA+ || fllBmologle + || fll2 + [[fller)),
where
1
BMO = { £ € Lhu(®) s oo = s s [ 1f = (gl d < o0
zern, >0 | BR(T)| Jpp)

PrROOF OF PROPOSITION 3.13. To avoid the complexity of the notation, we treat the
estimate only for the essential parts in rather formal way, namely dropping the parameter
¢ and cut-off function ¢. The rigorous procedure requires that all those estimates are
proceeded before passing to the limit R — oo and ¢ — 0 and the rigorous treatment can
be found in [40]. Observing the estimate (3.31), we need to estimate the last four terms
in the right-hand side. The fourth error term E;(z,v, ¢,e, V() is handled in Appendix A
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in [40] since it does not give any effect for the estimation of the other terms. Firstly, the
sixth term of the right-hand side of (3.31) can be estimated as follows:

—2/{6_’“/ vK (z,v,0)Vodr < 2ke™™ ||Vl s (/ vdx> ) </ v|K (2,0, ¢)? dx) )
n Rn n

)
<2057 e ol ol + 5 [ olK (v, 0)f do,
Rn

where 0 > 0 is a small parameter. Hence from Proposition 3.12, we obtain that

i[( (1) < —(2— 5) /nv|K(:c,v,¢)]2d:L‘—2(oz—1)/ | div K (2, v, 6)|? dz

n

—2/ VY| VK (2,0, )| dr + 2e~ =21 |vK(x v, d)|* dz
(3.34) "

e / (DK (2,,6) - K(a.t, ¢>> dz
052Dt ) [, sup(e 2| V(1) [2).

We now tern into how to treat the following term:

e [ DK (w.0) - K(w,1,0) da
Applying the logarithmic interpolation inequality of Brezis-Gallouet type (3.33), we see

ID%6(8) e < C(1+1D%6(8) 3110 log e + [1D*6(0) 12 + 1D*6(t) ) ).
By the Calderon-Zygmund inequality, we have
ID*¢ll2 < CllAGl2 < Ce*([[v]l2 + [Igll2) < Ce*[Jv]]2.
By the Schauder estimate, we obtain
ID*¢ller < Ce*(Ilvller + lI¢ller) < Ce™.
Finally, by the Calderon-Zygmund inequality again, we have
(3.35) 1D*¢llsao < CllAG||sro < ClIA(=e A + 1) 0| paro.

We notice that the corresponding Fourier multiplier of the operator appearing the right-
hand side of (3.35) is given by

S 3
e[+ 1 g2 + e

(2 )t 6 |£|2 7
TP + o

" = NE

and the multiplier satisfies the condition so that the operator e =2V |>=7(—e 2 A 41)7}
is bounded in BMO. Therefore

ID*¢||paro < Ce® |V 70| paro-
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From the uniform Holder estimate Proposition 3.6, |||V|"v||sao is bounded uniformly in
t. This enable us to proceed the estimate as

2077 [ B0, 0)K (00, 6)00,6 do < 27 D0(0)] [ ol K0, 0) do

(3.36)
< Qe =2+t / v| K (2,0, ) dv

for some 4" > 0. Combining (3.34) and (3.36), we obtain that if Kk =2 ie. a=2— 2,
d
(3.37) I0(1) < ~(2 - )I(()
+C(1+t)suplu(t)lle (v(t) + Ce™le ™ |Jo()[15 sup(e™ ™ [[Vo(1)]13)-
t t

Note that at this stage, the inequality (3.37) does not include the higher order terms so
that it is possible to justify it for the weak solution. Since 2(k — 2) = 0 when o = 2 — n,
we can choose v, > 0 such that for some large T, > 0, which depends on C|, for any
t Z T07

(3.38) e I(v(t)) < Ce ™.

L
Immediately we obtain that
I(v(t)) <e™ <I(U(T0)) +C el dr).
To
Since Ty is only depending on C' we may conclude that I(v(t)) < C(Tp) for 0 < t < Tj
and this concludes the desired estimate. 0J

The proof of the asymptotic profile in Theorem 3.4 completes after proving the con-
vergence of the rescaled solution and rescaling.

PROPOSITION 3.15. Let 1 < o < 2 — 2 and let (v, ¢) be a weak solution to (3.14). If
the initial data satisfies the condition (3.5), then we have for some v > 0 that

lo(t) = |l < Ce™

where

B Ca—1 o\t
#) = (A= wr)”

and the constant A is chosen as ||V |1 = ||uol|1-

PROOF OF PROPOSITION 3.15. Due to the result from Proposition 3.13, we immedi-
ately obtain that

(3.39) tlgilo I(v(t))=0
On the other hand, since by Proposition 3.7,
He(t)) < 20(0) + 27 [ w(OVo(o) da
< 21(v(t)) + 2e7 " Jo(t) |l VO (1) 13
< 2I(ug)e ™t + 20 e 2511,
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We conclude from (3.26) and Proposition 3.7 that for any s < ¢,
H(u(t))  H(v(s))|
< e (e VeIl + 16()113) — e (e IVe(s)ll3 + 6 (s)]5)]

"(r=2
+ [ (SR ITanIE + 5 NI + J(u(r)) do

(3.40) .
+/ e 2T (/n U(T)|V¢(7')|2dx) dr
< Clwe™ supl(e VO + 16(r)18) + 210 uo))e™ +2C (e

+ e~ 2w=1)s sup(e’QTHU(T)HOOHV¢(T)H§) <Ce™ =0, ass,t—
>0

and this shows that {H(v(t,))}. is the Cauchy sequence in t,, — co. Besides the moment
bound (3.19) in Proposition 3.9, |z|%v € L'(R") for some a > 2. Therefore by the
compactness WH(R™) N LL(R™) ¢ LY(R") N L3(R™), we have a subsequence v(t,) such
that it converges strongly to ¥ € L*(R") N Liy(R"). The similar argument found in
Carrillo-Toscani [15, Theorem 3.1] works for our case and we see that there exists a limit
function ¥ in L}(R™) such that

v(t,) =V, t,— o0

in L'(R™). It turns out that the limit function is also non-negative and bounded. While
by (3.39), the moment bound Proposition 3.9 and the natural regularity of the weak
solution, we see that

J(o(t)) = J(V) = / ¥

n

2

dr =0

(07

7 Vye 4y

a _—
and we obtain either ¥ = 0 or V¥~ ! = —O‘T_l almost everywhere. This concludes by
recalling M = ||uol|1,

-1 a1
Yo = |4 2|
a +
where A is chosen such that the L' norm of #'(z) is normalized as 1. Again the estimate
(3.26) in Proposition 3.10 and (3.40) gives

(3.41) H(o(t)) — H(V)| < Ce™

and that desired estimate follows from the argument in Carrillo-Toscani [15]. Namely we
see firstly that

(3.42) /{M} lw(t) — ¥ |dz < ($|H(ng(t)) _ H(a,/),) : (/B ¥ (z)n dx);

by the special structure of the Barenblatt-Pattle solution, where B = supp ¥ = {|z| <
2043} and yp is the characteristic function on B. While by M = |||, = [Jv(t)||; and

VY >0, we see

(3.43) / lu(t) — ¥ |dx = / |V —o(t)| dx = / lu(t) — V| dx.
{v>7} {v<7} {v<7}
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We note that over B¢, ¥ is vanishing and by Carrillo-Toscani [15, Lemma 4.4]

1 N 1 )
a—1 /x|z>c” (t) dz + 5/ (|2* = D)o(t) dz < [H(u() = H(V)],

(3.44)
D v(t)de < Ce .

|z|2>C
Combining (3.42), (3.43) and (3.44) with (3.40) we conclude that
lo(t) =¥y < O™

for some v/ > 0.
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CHAPTER 4

Holder continuity for solutions of the p-harmonic heat flow

1. The p-harmonic heat flow

We consider the following initial value problem of the p-harmonic heat flow:

(4.1) { O — div(|VulP?Vu) = div f, t>0,zeR",

u(0, ) = up(x), r e R",

where p > 2 is a constant, u : (0,00) x R" — R is unknown, f : (0,00) x R” — R™ and
ug : R — R are given external and initial data.

It is well-known that a classical solution of (4.1) does not generally exist. In fact,
when f =0, for 0 = n(p — 2) + p the Barenblatt solution

. _9 By 14555
U(t,z) == (1+0t)_o{1—p ( i ) }
P \(l+ot) +

satisfies (4.1) in the sense of distribution. Since the Barenblatt solution is not twice
differentiable, a classical solution of (4.1) does not generally exist. Hence we introduce
the notion of weak solutions.

DEFINITION 4.1. For uy € LY(R") and f € L'((0,00) x R"), we call u a weak solution
of (4.1) if there exists 7' > 0 such that
(1) u € L®(0,T; L2(R")) with Vu € L?(0,T; L’(R™); and
(2) u satisfies (4.1) in the sense of distribution, namely, for all ¢ € C*(0,T; C}(R")) and
for almost all 0 <t < T,

T T
/ u(t)e(t) dx — / / ulpp dtdzx + / / |VulP~2Vu - Vo dtdr
Rn o Jre 0o Jre

:4nuo¢(0)dx—AT/nf.v¢dtdx.

For the existence of a weak solution is shown by Browder [9], Ladyzenskaja-Solonnikov-
Ural'ceva [29] (cf. Otani [44]). In this chapter, we study the Hélder continuity of Vu,
particularly, we show a relationship between the Holder continuity of Vu and the regu-
larity of the external force f.

The Holder continuity of Vu was firstly shown by DiBenedetto-Friedman [19, 20] and
Wiegner [51] when f = 0. Misawa [33] showed the Holder continuity of Vu if f is locally
Holder continuous with respect to t and x. In this chapter, we give a weaker condition of
the external force f for the Holder continuity of Vu than the condition given by Misawa.

This chapter is based on the paper [36].
55



THEOREM 4.2. Let u be a weak solution of (4.1) satisfying Vu € L*((0,00) x R™).
Assume that for some constants K > 0 and v > n—+2— 1%, the external force f satisfies

(4.2) / / IV f|7T dtde < KR
Qr(to,zo0)

for all (tg,x9) € (0,00) x R™ and 0 < R < 1 satisfying Qgr(to,z0) C (0,00) x R™
Then YVu is Holder continuous with exponent v > 0 depending only on n,p,~y. And for
e > 0, there exists a constant C > 0 depending only on n,p, o, K,e such that for all
(t,2), (5,y) € (,00) x R",

Vu(t,2) = Vu(s,y)] < C(|t = |7 + |z —y").
REMARK 4.3. The assumption (4.2) holds for Vf € L] .(0,00; L{ (R"™)) when %—I—g <

loc loc
1,1 <rqg<ooandn > 2. Inparticular, if f is Holder continuous in (0,00) x R", then

VfelLl.(000;LL (R") for some r,q > 1 with %+§ < 1.

loc loc

To prove Theorem 4.2, we show the decay estimate of the mean oscillation of Vu
by the perturbation argument. It is well-known that we obtain the Holder continuity
by the decay estimate of the mean oscillation (cf. Campanato [14]). Considering the
time dependent mean oscillation of f and using the Poincare inequality, we treat f as a
perturbation under the condition (4.2). If the external force f is locally Holder continuous
with respect to t and z, then we have (4.2) hence our results cover the results of Misawa.

2. Proof of the Holder continuity

We show the decay estimate of the mean oscillation of Vu at (to,z¢). By the scaling
argument, we only consider (tg,z) € (1,00) x R™ and we omit to denote the center of
parabolic cylinders (to, o).

For R < 1, we consider the following reference equation:

L3 O — div(|[VolP V) =0, (t,z) € Qp,
( : ) V= U, (t,x) S 8pQR~

For the existence of a solution of (4.3), we refer to Ladyzenskaja-Solonnikov-Ural’ceva [29,
Theorem 6.7 in p.466]

LEMMA 4.4. Let A = \(t) : Ir — R™. Then there exists a constant C' > 0 depending
only on n,p such that

/BR(v(to) — u(ty))? dx + //QR Vo — VulP dtda < C//QR f — A\(B)|7T dtda.

PROOF OF LEMMA 4.4. Subtracting (4.1) from (4.3), multiplying (v — u) and inte-
grating in (Qg, we obtain

1/ Or(v — u)* dtdx + // ((\Vv|p72Vv — |[VulP~2Vu) - (Vo — Vu)) dtdx
2 Qr Qr

_ //QR (7 =2 - (Vo = Vu)) dtd.
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Using Lemma B.1 and the Holder inequality, we have

%// O(v — u)? dtdz + Cy(n, p) // Vv — VulP dtdx

< //R(g ~A(H) - (Vv — V) dide

< (//QR If = A(¢)|7T dtd:v)l (//QR Vv — vu|pdtdx)’l’

< Co(gap) // |V’U _ Vu’p dtdr + Cl(n’p) // ‘f — )\(t)lp%l dtdzx.

hSA

The following local maximum principle for (4.3) is given by DiBenedetto [18]

LEMMA 4.5 (DiBenedetto [18, Theorem 5.1 in p.238]). There exists a constant C' > 0
depending only on n,p such that

1 3
sup |Vo| < C’(— // |Vol? dtdm) .
Q% |QR| Qr

Using Lemma 4.5, we obtain the following lemma:

LEMMA 4.6. Let A = A(t) : Ir — R™. Then there exists a constant C' > 0 depending
only on n,p such that

1 P 2 P
(4.4) sup|Vv|§C’{<—// |f—>\(t)|p—1dtdac) —i—M?}.
Qg |QR| Qr
In particular, |Vv| is bounded on Q%.

PROOF OF LEMMA 4.6. By Lemma 4.4 and |Vu| < M, we have

//R |VolP dtdz < C(p) (//R Vo — Vul? dtdx + //R IV ul? dtdx)
< C(p) (//@R |f = N)|7 7 dtdz + \QR|M:D>_

Using Lemma 4.5, we obtain (4.4). We let A(¢) := (f(t))s,, then by the Poincare inequal-
ity and (4.2), we have

1 p p p
— // |f = A(@)|7-1 dtdz < C(n,p)R" *" 51 // |V f|7=T dtda
|QR| QR QR
< C(n,p) KR "2 51,

Since 79 > n + 2 — 55, we find that [Vv[ is bounded on Q%' O

The following Holder estimates of Vv is shown by DiBenedetto [18].
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LEMMA 4.7 (DiBenedetto [18, Theorem 1.17 in p.256]). For 0 < 6 < 1 and R < 1,
there exist constants cg > 0 and C' > 0 depending only on n,p such that

ag

p—2
R+ Rmax{1, HVUHLZO(QRH )}
2

distp(Qg, 8PQ%—5)

osc(Vv) < C||VU||L°°(QR1 )
7
Using Lemma 4.7 we show the following lemma:

LEMMA 4.8. For 0 < 6 < 1, there exists a constant C > 0 depending only on n,p such
that,

p—2 g
osc(Vo) < 8R6||VU||L00(QR175) + CHVUHLOO(QRl—&)(]' + max{1, Vo[ X o 175)}> R,
Q§ o o B

PROOF OF LEMMA 4.8. Either if R’ > 1, then

0sc(V0) < 2] Volli=(ay) <8RV, o)
2

Otherwise, if 0 < R < i, then

dist(Qz, 0pQ s ) = min{ (<R1;>2 - (@2)%’ (Rlz_é N §>}

Rl—(S
T

Therefore, by Lemma 4.7, we obtain

(1—-R%) > S pis.
8
p=2 Qg
05c(V0) < Cp. ) [Vl o) (1 max{L [ Vell 2, ,)}) " R,
> 2

Proor oF THEOREM 4.2. Fix 0 < p < R < 1. Then
(4.5)

/ Vu— (Vu)o, P dtde < C(p) ( / IV — Vol dtdz + / Vo — (VU)Qp\pdtdm> |
Qp Qp Qp

First, we estimate fo,, Vv — (Vv)g,|P dtdz. Either if 0 < p < £, then by Lemma 4.8,

// Vo — (Vv)g,|P dtdx
// osc(Vv)? dtdx

< C n p)HVUHLOO(Q . E)Rn+2+p6

T

p=2 pag
+ C(n,p)HVUH}zoo(Q#) (1 + max{1, HVUHL;(QRJZ(?)}) Rrt2+pdao.
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Otherwise, if % < p < R, then

n+2+
/ Vo — (Vo)g, [P dtdz < 2“+2+P<ﬁ> " / Vo — (Vo)g, P dtda.
Qs R Qo

Since
/ Vv — (Vu)g,|P dtdx
Qp
<co) | / V0 — (Vo)oul didz + CR)|Q,l(Tv)g, — (Vo)g,
// Vv — (V)o,|P dtdz + C(p // Vv — (Vv)g,|” dtdz
Qr

P) // Vv — (Vv)g,|F dtdz,

we obtain

p n+2+p
/ Vo — (Vo)g, P dtdz < C(n, p)(—) / / Vo — (Vo)o,|P dtdz.
Q R Qr |

Using the inequality

// Vv — (Vv)g,|F dtdx

C(n,p) // Vo — VulP dtdz + C(n, p) // IVu — (Vu)o, | didz,

we have

// Vv — (Vv)g,|P dtdx

n+2+p
<C(n,p) (%) //Q |Vu — (Vu)g, [P dtdz + ||vv||p°°(QR1_5 )Rn+2+p5
R

f,—

p_2 pao
n do
+ C’(n,p)HVv||’£OO(QRI_§)(1 + max{1, HVU||L§°(QRI_5)}) Rr2tpéao
2 2

C(n,p) // |Vu — Vol? dtdz.

We estimate [[, |Vv— VulPdidv. By Lemma 4.4, we have for A = A(t) : I — R,

// Vu — Vol? dtdz < C(n,p) // If — \¢)|77 dtd.
Qr QRr
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Therefore, by (4.5), we obtain
n+2+P
// Vu — (Vu)q,|P dtdx < C(n, p) // |[Vu — (Vu)g, [P dtdx

+ c<n,p>uwumm,§>R”““”5
2

p=2 pag
+0<n,p)llvvll”m@&1}5)(1+max{1 VUl . )}) Rr2poa0

+C(np)(< )" )//QR|f )7 dtds,

We let A(t) := (f(t))Bg., then by the Poincare inequality and (4.2), we have
// f = AP dtde < C(n, p)R7 / / V|75 dide < C(n, p) KR 75
Qr On

Applying Lemma B.14 for ¢(p fo |Vu — (Vu)g, |P dtdz, we obtain

// Vu — (Vu)g,|P dtdx < Cp" >+

for some v > 0. Since 7 +5>n+2, Vu is Holder continuous with exponent +.
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APPENDIX A

Harnack estimates for some nonlinear parabolic equation

1. Introduction and main result

We consider the following nonlinear parabolic equation:
Al 5’tu—Au+g(|Vu|2— 1)=0, (tz)e(0,00) xR",
' u(0,z) = up(x), =e€R",

where u(t, ) is the unknown function, ug(x) is a given initial data and € > 0 is a small
parameter.

To compute the motion by mean curvature, Bence-Merriman-Osher [5] proposed a
numerical algorithm which is called B-M-O algorithm, based on a simple procedure using
a solution of heat equations. There are some mathematical justifications and extensions of
the B-M-O algorithm given by Evans [21], Barles-Georgelin [4], H. Ishii [25] and H. Ishii-
K. Ishii [26]. Considering the B-M-O algorithm, Goto-K. Ishii-Ogawa [24] introduced the
singular limiting problem (A.1) of the nonlinear parabolic equation. Moreover, Goto-
K. Ishii-Ogawa gave another proof of the convergence of the B-M-O algorithm and a
solution u of the limiting problem (A.1) satisfies the level set equation of the motion by
mean curvature:

(A.2) Oru — |Vu|div (|§—Z’) =0
This problem (A.1) is similar to a singular limiting problem of the Allen-Cahn equation
and the behavior of the solution of limiting problem (A.1) might be singular as ¢ — 0.
In general, it is difficult to obtain the regularity of the solution of the limiting problem
(A.2). Besides, the regularity of the limiting problem (A.1) is related to a convergence of
the B-M-O algorithm. Hence, it is important to study the regularity of the solution of
(A.1) depending on the parameter € > 0.

We note the existence of a solution of (A.1). Let A = A+ 1 with a domain D(A.) =
H?(R") and e is a semigroup generated by A, on R".

DEFINITION A.1. We call u = u(t,x) a mild solution of (A.1) if there exists T > 0
such that u satisfies the integral equation:

¢
(A.3) u(t, z) = eeug(z) — %/ e ey (7, 1) |Vu(r, )| dr
0

foral0 <t < T.

The existence of the mild solution of (A.1) is as follows.

This chapter is taken from the paper [34].
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PROPOSITION A.2. Let 1 < p,r < oo be satisfying

11 1 1 2
S4+<, S4+S<L
P T n P T

For any initial data uy € LP(R™) with Vug € L"™(R"), we take T > 0 enough small such

that
3

57
where v = 5 }—17+ %) + % Then, there exists a unique mild solution of (1.3) such that
w e L>®(0,T;LP(R™)) and Vu € L>(0,T; L"(R")).

_ aT
0 < T (|Juol| orny + HVUOH%T(Rn)) <1, e= <

We will show the proof of Proposition A.2 in Section 3.

In Proposition A.2, we can obtain that the solution u is Holder continuous in the
spacial variable by the Sobolev embedding. Moreover, using the maximal regularity of
heat equations, we find that the solution u is smooth in (0,7"). However it is not clear
how the regularity of the solution depends on the parameter ¢ > 0.

To study the regularity, we consider the Holder estimate of the solution of (A.1). It is
well known that the Harnack inequality gives the interior Holder continuity for solutions
of parabolic equations. The Harnack constant, the constant in the Harnack inequality,
is related to the Holder exponent of the solution, hence we can regard that the Harnack
constant has some information of regularity of solutions of (A.1). Now, we study explicit
dependence on the parameter £ > 0 of the Harnack constant for nonnegative solutions of
(A.1) and state our main theorem.

THEOREM A.3 (The Harnack inequality). Let u. be a nonnegative mild solution of
(A.1) on (0,8T) x Byg and 0 < e < 1. Suppose that 0 < u. < M for some M > 0. Then
we have

0
sup  u. < CM exp <—) inf  w,

(T,2T)x Bg € ) (TT8T)xBg

where the constant C' depends on n, T, R and the constant 6 depends on n, M.

The basic strategy to prove theorem is to use the De Giorgi-Nash-Moser method. For
linear parabolic equations, Moser [37] showed the Harnack inequality and it is well-known
that his method may be extended to a nonlinear case. However we can not apply Moser’s
method directly since our equation has the strong nonlinearity and it is generally difficult
to treat the equation by a perturbation method, whenever the parameter € > 0 is small.
To overcome this difficulty, we employ the Cole-Hopf transform. Formally by using the
Cole-Hopf transform, the nonlinear equation (A.1) is transformed into some linear heat
equation and hence Moser’s method is applicable. Since we consider the mild solution,
we need to justify the Cole-Hopf transform in the weak formulation. For this purpose,
we modify Trudinger’s argument [49] and we investigate the explicit dependence of the
constant on €.

Once we obtain the theorem, we obtain the Holder continuity of solutions of (1.1) and
the estimate of the Holder exponent of solutions. Furthermore, our main theorem may be
developed a finer analysis of the singular limiting problem (A.1) as ¢ — 0. For instance,
our theorem is connected with the regularity of the derivative of the solution of singular
limiting problem (1.1). Moreover, by the regularity of the gradient of the solution, the
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interface of (A.1) make sense and we study the mean curvature flow and B-M-O algorithm
more clear.

This chapter is organized as follows. In section 2, we show the local maximum prin-
ciple, the weak Harnack inequality and we prove Theorem A.3. In section 3, we give the
existence theorem of the initial value problem of (A.1).

2. Proof of the Harnack inequality

In this section, we consider the Harnack estimate of the solution of the problem (A.1)
and investigate the dependence on the parameter € > 0 of the Harnack constant.

To prove Theorem A.3, we show the local maximum principle, estimating the supre-
mum of v by the LP-norm of u, and show the weak Harnack inequality, estimating the
LP-norm of u by the infimum of w.

First, we give the local maximum principle:

PROPOSITION A.4 (the local maximum principle). Let u. be a nonnegative mild so-
lution of (A.1) on (0,T) x Bg. Then, for allp >1,0<7 <7 <T,0< R <R and
0<e<1, we have

_nt2
sup  us < Ce™ 2 ||ue||Lo((r1)xBR)»
(+' T)x By

where the constant C' depends on n,p, 7,7, R, R'.
REMARK A.5. We consider the following problem:
(A.4) ovw—Av—v=0, (t,z)€ (0,T) x Bg.

For a nonnegative subsolution v of (A.4) and forallp > 1, 0<7 <7 <T,0< R <R,
we may obtain

sup v S C”UHLP((T,T)XBR)a
(", T)xBpg:

where the constant C' depends on n,p, 7,7, R, R'. We put

) i=o (5 72).

1
O — Av, — U= 0, (t,z)€(0,eT) x B sp.

then we have

By change of variable, we find

_n+2
sup ve < Ce™ 2 ||ve| Lo(er,en)

XB eR)"
(em",eT)X B szpr Ve

Therefore the power of € in Proposition A.4 naturally arises.
Second, we give the weak Harnack inequality:

PROPOSITION A.6 (the weak Harnack inequality). Let u. be a nonnegative mild solu-
tion of (A.1) on (0,T) x Bgr. Suppose that 0 < u. < M for some M > 0. Then, for all
p21,0<7§% and 0 < R’ < R, we have

0 .
where the constant C' depends on n,p, 7, R', R and the constant 8 depends on n, M.
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Using the local maximum principle and the weak Harnack inequality, we obtain The-
orem A.3.

2.1. Proof of the local maximum principle. Hereafter, we abbreviate the so-
lution u. of (A.1) as u. Before proving Proposition A.4, we show the reverse Holder
inequality.

LEMMA A.7. Let u be a nonnegative mild solution of (A.1), Then for all > 0,0 <
s<s <T,0<r" <rande <1, we have the following reverse Holder inequality:

(A5) ull

(1+ )(B-H)(( ' TYx B,)

<c<1+1)2(1<ﬁ+1)+ o+ )n 1850
B ) \e (r=r)? " (s =s)) T

where the constant C' depends on n only.

PrROOF OF LEMMA A.7. For simplicity, we treat the estimate for the classical solu-
tion. Set a cut-off function 7 satisfying

4

r—r!

4
0<n<l mntz)=1on(sT)x By, |Om<_—071 [Vy<
s =S

Taking the test function n?u? in the equation of (A.1), integrating over (s,t) x B, and
neglecting the term %|Vul?, we obtain

1 t t
—/ / nzﬁt(uﬁ“)deijB/ / n*uP 7 Vul? drda
6+1 s s s B
t 1 t
< —2/ / uﬁnVn-Vudex—l—g/ / n?u’ T drdz.

Using the Young inequality by the first integral of right-hand side, we have

: /n(t)uﬂ“(t)daﬂr // PV () [P drde

B+1

2 T
<= 5+1dd+—// %) ﬁ+1dd+—/ Vnl?uP+t drde.
< //,« Tdx 1), rn]m|u Tdx 7/ Br|n\u Tdx

From this inequality, we obtain

=

Hnu Lo (s,T;L%(B,))

1 1 1 1 Bt
<c{z++ (1+3) o+ 75 1 P sy

and

HT]UB+1 HL2(5T H3 (Br))

B+1 1 1\? 1 1 1 pt1
< _ — — — 2 2 2
_C{ ; (1+6)+(1+5) (T_T,)2+(1+ﬂ)s,_8}llu 122 o s22(8)




Djn

DO T

FIGURE A.1. Figure of D; (We let Dy, := (7',T) x Bgs)

where C' is the universal constant. Using the Ladyzenskaja inequality (B.2), we have

EES 8112
‘u ? ||L2(1+%)((s’,T)><BT/) < Hnu ? HLQ(H%)((S/,T)x&.)
1\? /1 1 1 1y
< o) (1 - B) (g(ﬁ U+ (r —r')? " (s — S)> lu™= W22 (5,7,
This implies the inequality (A.5). O

PROOF OF PROPOSITION A.4. For j € Ny, we put
=7 -27(r"-7), Rj:=R +27(R-R),

2 J
O = (1 + ﬁ) 5 Dj = (Tj,T) X BRj'

In the inequality (A.5), we set
B+1=pa;, §=141,s=1;, 1 =Rj1, r=R;

then we obtain
1

i (1 1 1 P
(A.6) [l proisi(py.yy < Cp,n) <g T TS R,)2> lullzees ().

This inequality (A.6) asserts that if [|u||re;(p,) is finite, then [[ul|fresi1(p,, ) is also finite.
Iterating this inequality (A.6), we find

[ullzreser (o myx By < lullzrese o,y

o g (1 1 1 Pﬁl“j
< o [ — »
- (C(p’"> <a+(r’—r)+(R—R’)2> )”“““D“

n+2

Clpm = (1 A )
= n)~=te | — U\ Le((r .
p, e (r'—7) (R-R)? Lr((r,T)x Br)
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We remark that > "%, ai is finite. Taking 7 — oo, we have

n+2

sip u<Clnp)e B (14— 4 1) |y
p .
(7.T) >I<)BR’ B P T —T (R — R/)2 Le((r,T)xBr)

O

REMARK A.8. In the proof of Proposition A.4 and Lemma A.7, we only consider the
classical solution of (A.1). However using the Steklov average, we may extend our results
for weak solutions of (A.1).

2.2. Proof of the weak Harnack inequality. First, as Lemma A.7, we show the
reverse Holder inequality.

LEMMA A.9. Let u be a nonnegative mild solution of (A.1). Suppose that 0 < u < M
for some M > 0. Then, for all 6 < —1,0 < s < <T and 0 < 1" < r, we have the
following reverse Holder inequality:

[4

1 1
B+1 ¢ B+1
AT 0 b e, < €6 (505 + o) 10 e,

where the constant C' depends on n and the constant 6 depends on M, 3 only.

LEMMA A.10. Let u be a nonnegative mild solution of (A.1). Suppose that 0 < u < M
for some M > 0. Then, for all =1 < <0,0< s <s<T and 0 <71’ <r, we have the
following reverse Holder inequality:

(A8) [lu|

L+ ((0,5")x B,/)

< Cle? max {1,

1+1‘ '1+l
o) I

2 1 1
1
} (s —5 - r')z) (i PAYCRPYS)

where the constant C' depends on n and the constant 0 depends on M, 3 only.
Since their proofs are similar, we show these lemmas at the same time.

PrOOF OF LEMMA A.9 AND LEMMA A.10. Set a cut-off function n satisfying 0 <
n < 1, and we require more condition for n later. We put by = % for our convenience.
Taking a test function n?e~%%u” in the equation of (A.1), integrating over (¢, t) x B, and

neglecting the term %, we obtain

t ¢
- / / n?e %P Opu drdx — / / n?e % (BuP Tt — bou”) | Vul? drda
t() ™ tO T

t t
< 2/ / ne %PV - Vudrdz + by / / n?e %8 | Vu|* drda.
to r to r

Using the Young inequality, we have

t t
(A.9) —/ / nge_bouuﬁatudex—g/ / n?e 0"y \Vul? drdx
tO r tO T

2 t
< ——/ / e Py | drda.
/8 to T
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For g # —1, we set

(ﬁ+n/mfwﬁd& if B> —1,
flu) = .
—(B+ 1)/ e 5P ds, if B < —1.

We remark that 9;f(u) = (8 + 1)e "“uPu. Either if 3 < —1, by the integral by part,
we have

flu)=—(B+ 1)uﬂ+1/ e bouryB gy (s = ur)
1
= bouﬁﬁ/ e~bour (1 — Aty ar
1

> 1
> bouﬁ-i-?/ e—bour(l _ Tﬁ-‘rl) dr > 1u6+16—b0M2 B+1 ‘
B o BHL -2

Otherwise, if —1 < 8 < 0, we have
1
flu)=(8+ 1)u’8+1/ e~y B dy (s = ur)
0
1
> e~boMy S (B 4 1)/ B dr = e7boMyBHL
0

On the other hand, since f(u) < u”*1, there exists 0 < 6 = (M, 8) < 1 such that
le*bOH(M:/B)uﬁJrl < flu) < WPt

(A.10) :

We remark that

O(M,5) — o0 as ff— —1,

O(M,B) — (M, —0) < oo as ff — —oc.
From (A.9) we obtain

L/ 28 oot [ a1
(A.11) —m/to at(an(“))dex_We boM/ /Tn2|vu52 ? drdx

WPV drdr + —— //)a WPt drdx.
‘m//T V) W+H ﬂ!m

We show the inequality (A.7) under the following additional condition
4

b
r—r!

4
(A.12) n(t,z) =1on (s',T) X B, [0n| < T V| < to=s

to the cut off function 7. Applying the estimates (A.11) and (A.12) to (A.10), and noting

that — (BH)Q > 0, we have
B 1 1 B
I i < O (5 + ) 5 Len,
and
B+1 1 1 B+1
[ HL2 ST H(BL) S Cen? (s’ 7 (r— 7“’)2) U HL2 (s )% By)’
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Using the Ladyzenskaja inequality (B.2), we obtain

B+1 ||2 B+1
2

H“ 120+2) (5 T)xBLy) = Hn“ ’ ‘}ig(1+%)((s,T)xBr)

1 g1

1
< C<n>eb09 (S/ — s + (74 _ T'/)Q) ||U : HiQ((s,T)XBr)’

and this implies (A.7).
Next, we show the inequality (A.8). We assume further condition on the test function
7 as
4

r—r

n(t,z) =1on (0,s") X B, [9m| <

V| <

S—S” IE tOZO

Then it follows from (A.11) that

. 1 1 1 B+1
H77“ ey Hiw(o,s;LQ(Br)) < O’ max {17 ’1 - E‘} <S’ —s * (r— 7“’)2> Hu g HiQ((O?S)XBr)
and
[al®
L2(0,5;Hg (Br))

< Ce”? max {1,

1
1+ =,
;

1
14—
s

2 1 1 B+l 12
o s (r — )2 v 2o 00y x 3,

Using the Ladyzenskaja inequality (B.2), we obtain

841 BtL
|u ;1||i2(1+%>((0,5/)><3w) < [ju 31”?2<1+%><<o,s>wr>

? 1 1 B+l 12
o s (r—11)2 v 22 061 x 3,

and this implies (A.8). O

< Ce*? max {1,

1
1+ =,
;

1
14—
B

REMARK A.11. Introducing the Cole-Hopf transform v = e‘%“, we find that v is
a subsolution of the linear heat equation under the assumption that u is the classical
solution of (A.1). We may regard that the test function ¢ = ne~0“u? as the justification
of the Cole-Hopf transform for weak formulations. The original idea to cancel out the
nonlinear term may be go-back to Aronson-Serrin [1] and Trudinger [49].

LEMMA A.12. Let u be a nonnegative mild solution in (0,T) x Br with 0 < u < M.
Then, for allq >0,0<7<7 <T and 0 < R' < R, we have

~MO(n+2)\ [ [T K
(A.13) inf  u>Cexp <$> (/ / u ! dtdx)
(7", T)x By 2qe + JBn

where the constant C' depends on n,q, 7 — 7, R — R’ and the constant 6 depends on M,q.
Proor or LEMMA A.12. For j € Ny, we put
=01-2("~7), rj=R+27(R-R),
2 J
O{j: (1“——) 5 Dj:(O,Tj)XBRj.
n
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In the inequality (A.7), we set
B+1=pa;, s=m5, §=141, =Ry, =R,

Then we obtain

1
_ M 1 1 oy 2042
Hu qHLajJrl(Dj-‘-l) < {C<n q)e et (7_/ _ T + (R - R/)Q)} A Hu qHLaj(Dj)'

Iterating this inequality, we find

sup u ?<C(n,q,7—7,R—R)e
(T/,T)XBR/

Taking the —i—th power, we obtain (A.13). O

]\19(n+2) _
[ 21 (Do)

Almost the same argument, we obtain the following lemma:

LEMMA A.13. Let u be a nonnegative mild solution in (0,T) x Bgr with 0 < u < M.
Then, for all0 < ¢<1<p,0<7 <7<T and 0 < R' < R, we have

MO(n+2)
”uHLP((O,T/)XBR/) < Cexp ( ) (/ / ul dtdx)
2qe Br

where the constant C depends on n,q, 7 — 7', R — R’ and the constant 6 depends on M,q.
Next, we consider the case f = —1 in the proof of the Lemma A.9 and Lemma A.10.

LEMMA A.14. Let u be a nonnegative mild solution of (A.1) in (0,T) x K,.. Suppose
that 0 < u < M for some M > 0. Then there exist C,py > 0 such that

1

% M 1 e~ PO
// uP® dtdx < CM exp / // u P dtdx ,
(0,§T)xKy 0 s §TI)xKx

where the constant C' depends on n,T,r only and the constant py depends on n only.

PROOF OF LEMMA A.14. Weputt>0 heR, f=—1,tg=tand t =1+ h in the
inequality (A.9). Replacing B, with K, := {z := (x;); € R" : max;<;<, |z;| < r}, we find

t+h 1 t+h
(A.14) / / n*e %y Ou drdr + 5/ / n?e %y 2| Vul? drdx
T t T
t+h
< 2/ / e "\ Vn|? drdzx.
t r

fu) = —/ e bosgT1 s,
1
then by 0, f(u) = —e "% 19u and V f(u) = —e P0"u"1Vu, we see from (A.14) that

t+h t+h
/ / 0?0, f (u) drdx + = / / 2ebo| 7 f (u) | drda
r r h
< 2/ / e~V drdx.
t r

Letting
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We freeze p > 0 and zy € K, so that K,(zg) C K,. We select a cut-off function n such
that

n=nx)=1 x€ Ks(x),
supp n CC K,(zo),

4
0<n<1,|Vp <-,

p
{z € R" : n(x) > A} is convex for all A > 0.

Then we obtain

tth 1 (t+h
[ orwad g [ [ vs@P drde < one
K, (o) 2.J4 Kp(zo)

where the constant C' depends on n only.
Applying Lemma B.6 by g = f(u), p =n* and D = K ,(z¢), we find

t+h fK 77 2dr  pt+h
/ nf(u)dz| + C =2 IZ+2 / / V(7))*n*drdr < Chp"2,
Ky(z0) t Kp(zo)

where (' is the constant depending on n and

S oy (2
f Kp(zo) 772 dx

Dividing by & | K, (z0) n?dx and letting h — 0, we obtain

v G Cp?
E + pn+2 /I;p(mo)(f(u) — V( )) dx S m CQP aa. 0<t<T

V(r) =

where the constant C5 depends on n only. We put 0 < ¢ty < T such that 0 < ty — % <
to+§ < T and set
wi(t,x) = f(u) = V(to) = Cop™(t — to),
Wi(t) = V(t) = V(to) — Cop™(t — to).
Then
AWy C

+ - / ('LU1 — W1)2 dx S 0,
(A.15) dt " iy (o)

Wi (to) = 0.

For s > 0, we put
Qps(t) == {z € K,(x0) : wi(t,z) > s}.
Since Wy (t) <0 for tg <t <ty + % by (A.15), we have
—Wy>s—W; >0, tzt(),l‘EQ%,s(t)

hence

dW1 Ch
dt pn+2




Therefore

Q2 5(1)] . _,d(s — W) . d .
= <Cr(s-M) " ——— = =Crt s =)

Integrating over (to,to + %), we find

: /toﬂ Qe (0)dt < 71— : <
pn+2 to g’s =1 S — Wl(tO) S — Wl(t() + %2) B 015'

We set Uy = (to,to + ﬁ) x Ko (x0), then

A /U+ V() = V{to)). dide

— W/U V(wi(t,z) + Cop=2(t — ty))4 dtdx

U_(/U \/Tdtd:ch// mdm)

1 1 t0+p7 © e
A (§/t (/0 s 2|Qg,s(t)|ds) dtJ”/ZQU*) .

to+§ 00 )
[ ([ s astonas) ar
to 0
t0+§ 1 L 00 L
- [ ([ stesolas s [T g olas)
to 0 1

= [1 + IQ.

(A.16)

| N

IN

Here we write

Using the following estimates

to-}—é 1 L
I g/ (/ 5‘2|Kg|ds) dt = 2|U, |,
to 0

© 1 t0+% o0 1pn+2 8
]g/ s 2 / e ()] dt dsg/ 52 ds = —|U,]|,
</ [ 0sa00 = U

we obtain

dtdx < C,
oo [ Ve,

where C' is the constant dependmg on n only.
2
We set U_ = (to — &, 7) X Kz (x0) and by the same argument, we have

<
|U|//\/ (to) — Ldtdx < C.
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Consequently, for 0 < tg < T, 9 € K, and p > 0 with (¢; — & to + £ ) Kg(:vo) C
(0,7) x K, we have

dtdx < C,
0] /m V() = Vito))s

<
|U|//\/ (to) — Ldtdx < C.

By the parabolic John-Nirenberg estimate, Lemma B.8, we have

(A.17) / / e Pl gty / / e P dtdy | < C.
(0,%T)><K% (gT7T)><K%

Now, we give the following lemma.

LEMMA A.15. Let

M 1— —bos 1 1— —bos
A:exp(—/ Lds), Bzexp(/ Lds).
1 S 0 B

Then we have
—log BE < f(§) < —log A
forall0 <& < M.

Proor or LEMMA A.15. We show that

Fi(§) == —log A — f(§) = 0
for all 0 < ¢ < M. By differentiating F}, we have

1 —bo&
Fg)= ¢+~ <0

Therefore Fy(§) > Fy(M) for 0 < ¢ < M. Since

M1 _ gbos
Fl(M):—logA—/ Tds’
1

we have Fi (M) = 0 if and only if A = exp ( M1 < o ds) and hence Fy(€) > 0 for all

0<é&ELS M.
As the similar argument, we obtain —log B < f(&) for all 0 < £ < M. 0J

By Lemma A.15 and the estimate (A.17), we have

/ / epolog A g / / epolos Bu qrgr | < C,
(0,5 T)xKr TTT)xKr

2

2

or
1

m B )
// uP° dtdx < (C— // u PO dtdx )
(O%T)XK% A (%T,T)XK%

Using Lemma A.12, A.13 and A.14, we obtain Proposition A.6.
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3. Existence of a mild solution

We show Proposition A.2, namely the existence of the mild solution of the following
initial value problem:

u
(A18) atu—Au—i—g(\Vu\z—l) =0, (t,x)€(0,T)xR",
u(0,z) = up(x), xe€R™
To prove Proposition A.2, we give key estimates.
LEMMA A.16. Let 1 < q < p < oo. Then for all p € LI(R™) we have
le <], < Crezt ™|l
[Vet<oll, < Caest= 0 2]l

n(l 1)
y=5l-—-]-
2\qg p

and C1,Cy are constants depending on p,q,n only.

where

Using the LP-L? estimate for e'®, we obtain Lemma A.16. In Lemma A.16, we may

take ,
_n(l_1 _ _ — 2f>/_|_ 1) 1_%
=4 2(37p) =Cy4™ n=L n(n—
Gotm i s (‘S | ( 2n(n — 29) |

where the constant Cy depends on n only, [S"7!| is the area of the (n — 1)-dimensional
unit sphere and I' is the gamma function, namely

['(s) ::/ t et dt.
0

In this section, the constants C7, Cs are as in Lemma A.16. To construct the contraction
mapping, we set the following function spaces.
DEFINITION A.17. Let 1 < p,r < oo, T, M > 0. We define
Xar(T) = Xagpo(T) 1= {u € C(0,T); LY(R)) : Vu € C(0,T]; L (R)
[l xy = Nlulloqoy;e@ny + [Vulleqoryr@my) < M}
We define the distance of X,/ (7)) by
d(u,v) := [lu=vllogqozy:Lr@ny + IV (w = v)llogory:Lr@ny).-

We denote the homogeneous Sobolev space by Wh4(R"). Since X m(T) is closed in
C([0,7]; LP(R™))NC([0, T]; WHI(R™)) and C([0, T]; LP(R"))NC([0, T]; WHI(R™)) is com-
plete, X»/(T) is a complete metric space.

3.1. Estimate of perturbation.

DEFINITION A.18. Using e, we define

1 t
(419 0w = oy [ () Fu(r) e
0
for u € Xy (7).
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We show the existence of a fixed point for . First, we take 7" > 0 such that we define
® on Xy (7).

LEMMA A.19. Let 1 < p,q < oo be satisfying
1 1 1 1 2
-—+-<-=, —+-<1,
p q n p q
and let M,~ be

M = 2([luolly + IVuollg), v =

o3
VR
"=

+
Q| =
N———

+
N —

Let 0 < Ty < 1 be small enough such that

1=y r2 £
CT, "M* < 1, es <3,

where C' is the constant depending on n,p,q,e only. Then ®(u) € Xy (T) for all T < Ty
and u € Xy (T).

REMARK A.20. We can take Tj explicitly so that

-7 1—y
(A.20) et <l é (CHTTB &l ) <!

2 r—mn 1—~ | = 4M?

ProOOF OF LEMMA A.19. First, we consider the estimate of || ®(u) | c(jo,17;00n)). We
put r > 1 as % = % + %. By Lemma A.16, we have

1@ (@)l < e ull, + / DA ()| Vu(r) P, dr
C

< e, + £ /

€ Jo

Using the Holder inequality, we have ||u(7)|Vu(T)[*||, < [[u(7),[|Vu(r)||? hence

C b, n
@)l < ol + & / T (t— ) () V) |2

We remark ¢ > n since £ > 1 —i— . Therefore taking a supremum for ¢ in (A.21), we find

(A.21)

e (t— 1) |Ju(r)|Vulr)?|], dr.

C’ T K _n
sup [[@(u(®))ll, < e luoll, + —e* sup /O(t—T) o fJu(m) V() dr

0<t<T € 0<t<T

C’1 r t _n
+—e= sup |lu(t)]l, sup [|[Vu(t)|? sup /(t—T) @ dr
£ 0<t<T 0<t<T 0

0<t<T

T
< e |Juolly

C t n
< e%||uo||p—|— Le= M3 sup / (t—71) adr.
€ 0<t<T Jo
Since .
n n t n
/(t—T)q dr = 4 [_(t_T)*aH} S
0 qg—n 0 q-n
we obtain

1_,

r 01 qT
sup [|(u(t)ll, < e fuol, + e MPT—.
0<t<T qg—n
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Next, we consider ||V®(u)|c(jo,r);Le(rn))- Differentiating (A.19), we can write
1 t
Vo (u(t)) = Vetuy — —/ AV (u(7)| V(1) ?) dr.
€Jo
Considering the LP-L? estimate of the derivative in Lemma A.16, we find

Ve(t_T)A(u(T)|Vu(T)|2) dr

q

1 t
IVe(®)l, < e Vol + - [

C t t—7 .
< HetAVuolqur—;/ e = (t =) u()Vu(r) P dr,
0

where 1 = 113 + %. Using the Holder inequality for the integrand, we have |ju|Vul?||, <

n/l 1 1
y==(=+=)+=<1,
P q 2

||u||p||Vu||g Since

we have

Cy o [ _
VRO, < €4l + ZeF [ =) Tu(o) i

As the previous estimate, taking the supremum for ¢, we obtain

1—y
sup [V (u(t))ly < e [|Vuolly + —e* M*—.

0<t<T 11—~

From the above estimate, we have

) < —
[2@lx,, < Fet + e

M r Mt (C’qul_Z . @Tlv)
- .

Taking T} as (A.20), we obtain

M M
[@(W)llxy < =+ <M
4 4
for T' < Ty, therefore if u € X (7T'), then ®(u) € X (7). O

3.2. Contraction of ®.

LEMMA A.21. Let p,q be as Lemma A.19. Then for small T > 0, ® is a contraction
mapping on X (T).

PrOOF OF LEMMA A.21. By Lemma A.16 we find

1 ! t—7)A 2 2
[ (u(t)) = 2(u(®)]l, < 5/0 le® DA ((r)[Vu(r)[* = o(r)[Vo(r) )|, dr

< %/0 e T (t =) u()Vu() — o) Vo(r) |, dr
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for u,v € Xy (T), where % = % + %. By the Holder inequality, we have
lu(®)[Vut)? = o@)[Vot)[l < [[(ut) —v@)[Vu®) Pl + [(Vu@®)? = [Vo@) )o@,
< N (ut) = o)L Vu@)li;
+ [IVu(t) + Vo) [V (u(t) = o(@)[llo @)l
< M |lu(t) = v(t)ll, + 2M2(|V (u(t) = v(®)) 4,

and hence
sup | (u(t)) — 2(v(t))ll,
0<t<T
2M2C qe%Tlfg
< 2O Ty )~ o0l + sup 9000 o))
e(qg—n) 0<t<T 0<t<T

As the similar estimate, putting v = 5 (% + %) + % we find

sup [V(@(u(t)) — eu(t))l,

2IM2Che= T (
e(1 =)
From the above estimate, we obtain

oM2et [ CyqT ¢ CyT
— + _ Hu - UHXM'
€ q—n 1

sup [u(t) = (Ol + sup [9(ult) ()l )

0<t<T

1@ (u) = (v)]lx, <

Therefore, taking 7' > 0 small enough so that
2M2et (0qu1—2 CQTM) 3
+ < 1

(A.22)
€ q—n 1—7

we have 3
12(w) = 2()llxs < Jllw = vl
O

REMARK A.22. We take T, > 0 satisfying (A.20). Then the inequality (A.22) is
satisfied for all T' < Tj.

PRrROOF OF PROPOSITION A.2. By Lemma A.19 and Lemma A.21, we find that & is
a contraction mapping on X, (7"). Since Cauchy’s fixed point theorem, ¢ has a fixed
point, namely there uniquely exists u € X;(7") such that ®(u) = u. This u satisfies (A.3)
and is unique in {u € C([0,T]; LP(R™)) : Vu € C([0,T]; L9(R™))}. O

REMARK A.23. We consider the following initial-boundary problem:
Opu — Au + g(|Vu|2 ~1)=0, ()€ (0,T)xQ,
(A.23) u(0,2) = up(x), =z €,
u(t,z) =0, (t,z) € (0,T) x S
If Lemma A.16 holds, then we may use our argument and show the existence of a solution

of (A.23).
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APPENDIX B

Some fundamental calculus
Their results are well-known, however we give the proof for self-containedness.

1. Algebraic inequalities

LeEMMA B.1 (DiBenedetto [18, Lemma 4.4 in p.13]). Let p > 2 and d € N. Then there
exists Cy > 0 depending only on p such that

(B.1) (|aP~2a — |b[P~2b) - (a — b) > Cyla — b|P
for all a,b € RY.

PrROOF OoF LEMMA B.1. Since p > 2, we have
(lafP~2a — [b]P~2b) - (a — b) = (/01 %{]sa + (1 = s)bP2(sa+ (1 — s)b)}ds - (a — b))
> /1 lsa+ (1= s)bP2la — b ds.
0
Either if |a| > |b — al, we have
lsa+ (1 —38)bP 2 =|a— (1 —s)(a—0b)| > |la| — (1 —s)|a —b|| > s|a — b
and hence we obtain (B.1). Otherwise, namely if |a| < |b — a|, we obtain
jsat (1= )b < Ja| + (1= )b —a| < 2 —s)lb—a

and hence

1 1 2\2

_ + (1 —s)b|?)2
K2 . p2d > _bZ (|SCL d
la — b /0 lsa + (1 — s)b| s> la |/0 CESEE s

s 5
> —(/ |sa + (1 — 3)b[2ds)
4\ Jo

11 P
= 13—%(Ia|2 +[b* + (a - b))2.

Remarking that |a|? + [b|* + (a - b) = f|a — b|* + 3]a + b|?, we obtain (B.1). O

2. Sobolev type inequalities

ProprosITION B.2 (Ladyzenskaja-Solonnikov-Ural’ceva [29, p.74]). Let I C R be an
open interval and let Q C R™ be a domain. Then for f € L>(I;L*(Q)) N L*(I; H}(Q))
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and p,q > 2 satisfying

2
s n_n if n#2,
g p 2
2
_jLE:E without q=2, p=o0 if n=2,
g p 2
we obtain
(B.2) 11z e @) < C,p, @) (1f | oo 220y + 1V Fllzaxe))-

PROOF OF PROPOSITION B.2. By the Gagliardo-Nirenberg-Sobolev inequality, we
have

n

57y (5-3)
1oy < COLp) IV Doyl Dl oy * a2t €.
Taking L7(I) norm on both side, we obtain (B.2). O

REMARK B.3. If r = ¢ in the LadyZenskaja inequality, we obtain
(B'B) ||fHL2(1+ >(I><Q) (Hf”L‘X’ I;L2(Q)) + ||fHL2 IxQ) )

PROPOSITION B.4 (Ladyzenskaja-Solonnikov-Ural’ceva [29, p.91]). Let f € W''(B,)
be a non-negative function and let | > k. Then there exists a constant C > 0 depending
on n only such that

Cp
I—k I} <
( WS> 1} < 1Bo| — {f >k} Jiper<ny

where the n -dimensional Lebesgue measure of A C R™ is denoted by |A|.

n+1

IV f|da,

For the proof of Proposition B.4, we need the following weighted Poincaré inequality:

LeEmMMA B.5 (Ladyzenskaja-Solonnikov-Ural’ceva [29, Lemma 5.1 in p.89]). Let g be a
non-negative function in WH(B,) and let Ny := {g = 0}. Let n(x) = n(|z|) be a decreas-
ing function of |x| satisfying 0 < n <1 and n‘NO = 1. Then for measurable set N C B,,
we have

[ o) a < LN [ 9ot e

ProoF oF LEMMA B.5. We firstly consider the case n > 2. For x € N, 2’/ € Ny, we
have

|2/ —x| |2" —=|
ole) = ola) ~ala) == [ Sorraar< [T Valat ol

where w = ‘ . We show
(B.4) n(z) <nlz+rw) for 0<r< |2’ —x.

Either if |x| < |2'[, then z 4+ rw € By by the convexity of Bj,. By the monotonicity
of n, we have n(x +rw) > n(z’) = 1. Otherwise, if [z| > |2/|, then x + rw € Bj,;|. Since
n(x 4+ rw) > n(zx), we obtain (B.4).

By (B.4), we have

o/~
g(x)n(z) < /0 Vg(x + rw)n(x + rw) dr.
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Integrating over x € N and 2’ € Ny, we have

o/ —a|
\No|/ dx</ dx/ dx/ Vg(x + rw)n(x + rw) dr
No

Let g(x) = n(z) be zero on z € R"\ B,. Introducing the polar coordinate, we obtain

o/ —al
/ dx’ / |Vg(x +rw)n(x +rw)dr
No 0

<J.

|2’ —|
d:L"/ Vg(x + rw)|n(x + rw) dr
0

2p(z)
o/ —al
g/ daz’/ |Vg(x+rw)n(x +rw)dr
Bap(a) 0
2p ;o
:/ e lds/ |Vg T+ rw |17](:Jc—|—rw) 1 g x —niq+x,
0 gn-1 rn- ceS"s>0
2p
0 @ |lz—y|"”
< @o)r / IVg( )In(y)
~on Jp, lw—yt

where S"7! is the (n — 1)-dimensional unit sphere. Therefore,

\N0|/ da:< / / Now)nt) ;.
va—yI” i

:% ; Va(y)In(y) dy/dew-

We show the following estimate:

1 1
B.5 /—dxg 14 [S™ )| N~
(B.5) e S A ISTIN

where |S"7!| is the area of the (n — 1)-dimensional unit sphere. To show (B.5), let 6 > 0
be chosen later. We split the integral

1 1 1
/—nldfcﬁ/ —nldl“+/ =
N T =yl N{|z—y|<8} [z — | NOf{|z—y|>6} |z —y

= [1 -+ IQ.

By the simple calculation, we obtain

1) rn—l 1
I §/ 1dr/ do = 6|S", Igg/ dr < 6" "|N|.
0 rn— sn—1 N 5n—1

Taking 6 = |N|, we have I + I, < (1+ [S" )| N|#. Using (B.5), we have
2n 1+ Sn 1 . 1
Mol [ o) de < ZEEED g [ wain)ay

P
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We consider the case n = 1. For x € N and 2’ € N,, we have

g9(z) = g(z) — g(a’) = /j d%g(y) dy < /: %g(y)‘ dy’ :
Since

o) < | [ st to| < [ ot ay
we obtain

/N g(@)n(x) dz < |N| / Vg(a)in(a) da

O
PROOF OF PROPOSITION B.4. Let
g(z) = max{l — k, (f —k).} € W"'(B,), Ny:={f <k},
n(x) =1, N :={f>1}.
Then, by Lemma B.5, we have
Cop™|N|%
[ stwyae < 2B [ wgan,
N [No| /g,
hence L
Cop"[{f > 1}~ /
l—k){f>1} < Vf(x)|dx.
(= k){f > 1}] < {del}l ()]
O

Next, we give another type of the weighted Poincaré inequality.

LEMMA B.6 (Lieberman [30, p.113 Lemma 6.12]). Let p be a nonnegative continuous
function in a bounded convex domain D with compact support. Furthermore {z € D :
w(x) > A} is convex for all A > 0. Then

/D(g<$> - k)Q,U(x) dr < CM

for all g € H(D), where

lilli~io) [ 9900 Pula) da

A:/D,u(x)dx, k= (xzf(x)da:

Proor oF LEMMA B.6. Considering %, we may assume A = 1. By the Hélder in-
equality, we have

[ -wru = [ ([ 6= st <>dy)2czx
/dl“/ |9(z u(x)ply) dy.

We fix z,y € supp p with x # y and let w = |y7x‘. Then

ly—2| g4 ?
/0 ag(:p +rw)dr
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ly—z|
l9(z) — g(y)I* = <ly-— 33|/0 IVg(z +rw)|*dr.




Since {z € D : pu(z) > min{pu(z), u(y)}} is convex, we find

)
pr +rw) = min{u(z), p(y)}
for 0 <7 < |y — x|. Using p(x)u(y) < ||pllreepymin{p(z), p(y)}, we have

ly—z|
lg(x) — g() () u(y) < lpllzemyly — ] /0 IVg(x + rw)*pu(z + rw) dr.

We let d = diam D and g(z) = p(z) =0 if z € R*\ D. Then for all x € supp p,

/D 19(2) — g(y) Prula)uly) dy
ly—z|
< Nl /B ly— 2| dy / V(e + rw)Pule + rw) dr

Vg(z + rw) |2 (x+rw) 1 y=so+ux
o /d/ A T (o<cocd ges

‘Vg p(2) W = |Z:r| =0
- / " ds /m Z_x‘nl O G
a1 V(=) Pulz)
= ey [ FEE

n+1 |z — |1

Therefore

/D(g(w)—k)2u(w) de/ d:c/Dlg(rv)—g(y)I%(x)u(y) dy

dn+1 v 2
< oy [ o [ TG g,
D

|z — |1
dn+1
= Ll /|Vg P u(z dz/|z o da,

As the same argument of the proof of Lemma B.5, we have

/ 2 — 2"V dx < C(n)|D|* < C(n) diam D
D
and we obtain Lemma B.6. ]

3. Parabolic John-Nirenberg estimates

Before giving the parabolic John-Nirenberg estimate, we introduce some notations:
Let N € N be a space dimension. For r > 0, we put K, = [-r, 7|V, U, = (-r%,1?) x K,
and
Ub =(0,7%) x K,, U~ =(—r%0) x K,,

1
—7“2,7"2) x K., V— (—7‘2,—57‘2) x K,,

7"2,7“2) x K., W = (—7"2,—§r2) x K,.

4
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g (N=1)

7

v,

Ut

FIGURE B.1. Definition of K,., U, V.* and W, for N =1

DEFINITION B.7. For C € RY¥*! we call C a parabolic rectangle if there exist (o, 29) €
R and r > 0 such that C = (to, zo) + U,. For parabolic rectangle C', we write

O+ = (t()ny) + U:r) C™ = (t07$0) + Ur_a
-D+ = (t07x0)+‘/;«+7 D™ = (t07x0)+‘/;«_7
Et = (to,ﬂ?o) + WTJF, E = (to,ﬂ?o) + W;.

We write U = U, for short and U*, V*, W* are defined in a similar manner. In this
section, we show the following lemma:

LEMMA B.8 (Moser [37], Fabes-Garofalo [22]). Let f be a function on U. Suppose
that there exists constant A > 0 such that for all parabolic rectangle C C U we have

ﬁ / [ V) = Vel deda < 4,

(B.6)

Ldtdr < A,
|C | \/

for some constant ac € R dependmg on C only. Then there exist py, Cy > 0 such that

( / / ePof () dtdx) < / / e~Pof(ta) dtdm) < C|lWH||[w-,
W+ -

where the constant Cy depends on N and the constant py depends on N, A.
To show Lemma B.8, we firstly give the estimate of distribution functions of f.
LEMMA B.9. As for the same assumption of Lemma B.8, we obtain
{(t,0) € V* - (f(t2) — av)s > a}| < Be VAW
(B.7) =
‘{(t,az) eV (ft,7) —ay)_ > a}‘ < Be WAV
for all a > 0, where the constants B,b depend only on N.

PROOF OF LEMMA B.9. Considering — f(—t, x), we only show the first inequality of
(B.7). Without loss of generality, we assume A =

1
a < 1, we have e > ¢7? and hence for o > 1, we show
{(to) e VF i it o) >} | < B VAV,
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We give a decomposition procedure. We fix 8 > 0. We subdivide D = V7 into
4N*2 congruent sub-rectangles with disjoint interiors. Let {DY,(5)}; denote the family of

those sub-rectangles and C ;() denote the corresponding parabolic rectangle of Dfl(ﬁ)
Next, for Dfﬂ-(ﬁ) satisfying 8 > ac, (), we similarly subdivide D ;() and the process is
repeated indefinitely. Then we obtain {D, ()}, and we put

n=1 1

We show
(B.8) Vi) <1+ /B aa. (t,x) € Do\ D(B).

In fact, if (¢,2) € Do\ D(/3), then we obtain the sequence of parabolic rectangles {C,, }>
such that

(t,x) € D}, ac, <8 and |C,| — 0 as n — oo.
Therefore, by (B.6) and A =1, we have

e L VR s < o | =)y dde +/E < 14

By the Lebesgue differentiation theorem, we obtain

1
W/ V[t x)dtde — \/ f+(t,z) as n — o0
n ct
for almost all (t,x) € Dy \ D(8). From (B.8), for 5 > 0, we have

{(t,z) € D : f(t,2) > (1+/B)*} C D(B)

CLAIM B.10. There ewists a constant Cy depending only on N such that if \/B >
Va+1, then

D) < = ID(o)]

We show Lemma B.9 by temporary admitting Claim B.10. Put L := 2Cy 4+ 1. Then
for v > 0, we have

(B.9)

Co

1
A < N < = H].
D((r+ 17)| < oy 11200 < 51067)
For 8 > 0, we take ng € NU {0} satisfying noL < 8 < (ng+ 1)L. Then we find
no—1
D = Do < (5) b <4 (3)" g = ae- iy

Therefore, for a > 1, we have

—1

‘{tx ye VT fi(t,) >oz}‘ ‘D Va —1)3 ’<4e log 2|1/,

and we obtain Lemma B.9.
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We show the inequality (B.9). {D}(8)} is disjoint interiors but {C ;(5)} may not
be. Hence we make a disjoint family of {C, ;(5)} as follows: First, we take {*C| ()} C
{C1,(B)} with disjoint interiors and

Int Cr,(8)( ) (U Int*CLj(ﬁ)> #0

for all 7. Second, we take {*C,;(8)} C {Cy;(B)} such that {*C, (B)}1<m<z,; is disjoint

interiors and
s U Unecam) #9

1<m<2 j

for all 7. Similarly, for n € N, we take {*C, ;(8)} C {C,,;(8)} such that {*C, ;(8)}1<m<n,;
is disjoint interiors and

Int C, ﬂ( U Umt-c, )#@

1<m<n j

for all 7.
For 0 < a < 3, we take {D;;(a)} and {D;; ()} by the decomposition procedure. Let
{*C..;(8)} be the disjoint family of {C, ;(3)}. For m € N, we put

I, := {(n,z) cInt O (8) ﬂ ( U UInt*C';L,J(B)> #0

1<m’/'<m j

and IntC;AB)ﬂ( U UInt*C’_

1<m/<m—1 j

=
N——
I
=
—

Since (n, i) € I, for some m < n, we have
m=1 (n)€el
For a rectangle C' C R¥*! and a > 0, let aC be a rectangle which length are the length

of C a times. Since

D} ,(B) C4C,,(B) | J16°C,, ;(8) for (n,i) € I,

we have
Z B <1671 Y S fC
=1 elm m=1 j

Since {D;,.(a)} is dlSJOlIlt interiors, we find

| |<16N+IZ Z

=1 (m,j)eJ;
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where J; := {(m,j) : D}, ;(8) € U, D}, (a)}. For (m, j) € J;, we have

< W [C—’,(,B) \/(f(t, x) — a*cm,] ) dtdx —|- 9] / \/er(t, x) dtdx
<1+ / mdtda’
mJ m.; (B)

7n]

and hence
WB-1) Y [ < Z/ T dids
(m,j)EJl (mj €Jy

Furthermore, since D,;, .(8) C Dj}.(a) C D/ ;. (a) for some (I, k), k" and ac, , ,,@) < o,
we have

Z / V [+ (t, z) dtdx

(moj)ed; ’ "Cm.i(B)

o [c,m(m YUt = a0, o) dide +Val Oy )]

(m,j)€T;
For (I, k), we put
Jig = {(m, i) : D:u(ﬁ) - DzJ,rk(O‘)}-

Then *C,, ;(B) C C/ | . (a) for all (m, j) € Ji. and for some k' depending only on k. By
the disjointness of {*C,, ;(8)}, we obtain

lc_ . VU ) = a0, o)+ dtde

JU2) = ac,, yw) dide

(m,3)E€Jd1k "Cni(B)

\/(f(t,:c) ac, | @)+ didz
C,, . (B)

. * -
(m.j)€J ) ~m,j

JU2) = ac_, ) dide
§Z|Oz1k' |_22|Dllk’ |_2 4N+2Z|D

Finally, we obtain

(o)

D) < CN) 30 Y. <D ()] < CN) |l
and proof of (B.9) is complete. O
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LEMMA B.11. As the same assumption of Lemma B.8, there exists A" > 0 depending
only on N, A such that

yD_1+| //lﬁ(f(t,x) Vo) dide < A
ﬁ / / (Vo — f(t.2)) didz < 4

for all parabolic cylinder C' C U.

(B.10)

PROOF OF LEMMA B.11. We only show the first inequality of (B.10). By Lemma
B.9, we have

[{(t0) € D"+ (£(t.5) — ac)s > o} | < BV

Therefore

1 oo _
T // (f(t,z) = Vo) dtde < B/ e V% da < 0.
|‘D | D+ 0
O
As the same argument of the proof of Lemma B.9, we obtain the following lemma:

LEMMA B.12. Assume that there exists A" > 0 such that (B.10) holds for all parabolic
rectangle C C U. Then there exist constants B',b' > 0 depending only on N such that

){(t,x) eW*: (f(t,2) — ap)y > a}’ < Ble VS W,
){(t,x) eW: (f(t,z) — ay)_ > a}’ < Ble '@,

PROOF OF LEMMA B.8. Let pg < 2—', where A’ is as Lemma B.11 and ¥’ is as Lemma
B.12. Then

/ ePol(2) iy < epO“U/ ePo(f(bx)=av)+ gy
W+

W+

(f(tw)—av)+
< epoaU/ Do / eP“da+ 1| didx
w+ 0
< ePP%p, </OO ePoe
0

< ePOpg </ epoo‘(B'e_%o‘) do + 1) W+
0

{t, ) e W (f(t,z) —av)+ > a}‘ do + ]W+|>

< el (B'/ O 1) W.
0
Similarly,

/ e Pl (2) gty < emPooU g, <B'/ e(PO_/bTI’)a do + 1) |[W.

0
Therefore,

0 , 2
/ e (49 dtdy / e /) dtdy < py (B’ / el da+1> W w
w+ - 0

and proof of Lemma B.8 is complete. O
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4. Recursive inequalities

LeEMMA B.13 (Ladyzenskaja-Solonnikov-Ural’ceva [29, p.96]). Let C,e,6 > 0,b > 1
and let {Y, 120, {Z,}5°, C (0,00) satisfy
Yo S CV(Y,P 4 Y0711,

B.11
(B.11) Zpsy < COM(Y, + Z49).

Set
€

1+¢

d := min {57 } , A\ = min {(26’)_%1)_(% (2C)" = b_s%} )

Then, if Yo < X and Zy < /\ﬁ, we obtain
(B.12) Y, <XNbi, Z, < (Abmd)Tre
In particular, Y,, Z, — 0 as n — oo.

PrROOF OoF LEMMA B.13. Inequalities (B.12) are valid for n = 0. We prove (B.12)
by induction. If (B.12) hold for n, then by (B.11), we have

1+6

Yo < 20A0p =0 7z <20 T

1

Since A < (2C)"5b s and d < 8, we have

n+1

2ONHII=1) < \pmapatr(-) < \p~ "

14e
< b~ sd we obtain

Similarly, since A < (2C')~

2CA(1—0) = AT ATz T (- A < (AT ) T )

Since d < & we find 1 —

St @9 < 0 and hence we have (B.12) for n + 1. O

LEMMA B.14 (Giaquinta [23, Lemma 2.1 in p.86]). Let ¢ = ¢(s) be a non-negative
function on [0,00). Assume that for some constants Ry, Ao, A1, B,a, > 0 with f < a,
the function ¢ satisfies

5(0) < Avb(R)
o(p) < A (g) 6(R) + BR’

for all 0 < p < R < Ry. Then, there exists a constant C' > 0 depending only on

Ao, A1, a, B such that
B
¢m)§0{(%)¢ﬁb+3M}-

Proor orF LEMMA B.14. Let r < 1 be chosen later. For R < Ry, taking p = rR, we
have

o(rR) < Ayr*¢(R) + BR®.
We fix 8 < v < a and we put r = ry satisfying A;r§ < rj. Then
d(roR) < Ar$é(R) + BR® < r]¢(R) + BR".
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Therefore, for k € NU {0}, we have

k
o(rs ™ R) < rg™ () + Bri” R g,

j=0
Since
k [e’e) ,3
(v=8) (=8 _
Z <> T
=0 = 0 —To
we obtain 5
BR
k k
G(r6R) < 10" ¢(R) + 16" —5—
0 0

for k € NU{0}. For p > 0, there exists kg € N U {0} such that ri°™ R < p < ri°R.
Therefore, we obtain

6(p) < Aod(rf°R) < Ay (r§”¢<R> e )

S
To —To

B 7 _ ’ BRS
< A4 <Toy(%) ¢(R) +T06(%) B Tv)'
o —To

5. Weak LP spaces and Lorentz spaces

Let © C R™ be a domain (not necessary bounded).

DEFINITION B.15. For 1 < p < oo, we define the Lorentz space LP*>(£2) by
LP(Q) := {f € Lip.(2) : MWy (N) is bounded for all A > 0}

where g7 /(A) == [{x € Q : |f(x)] > A}
PROPOSITION B.16 (cf Benilan—Brezis—Crandall [6, p.548]). For 1 < p < oo, we have

1
T ||f||L” ) < Sup)\ﬂlfl( )2 < fllee@
p

1

PROOF OF PROPOSITION B.16. We firstly show supy. Apjs(A)? < || fl|rp ). For
p, A >0, we take K = {z € Q:|f(x)| > A} N B,. Then we have

1
iz = [z e@nBys @l =2 [ (p@)lde
{F>AINB,
1

Z/\‘{erﬂBp:|f(x)
where {|f| > A} ={z € Q:|f(z)| > A\}. Letting p — oo, we find
At (AP < | fllzz o

We show ”+1 £z (@) < supyso )\um()\)%. We fix A\g > 0. For measurable set K C €2, we

/ ’f(iU)’de)\o|K|+/ |f(x)| dz.
K {1/1>Xo}
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By the above inequality, we have

/{If|>Ao} Jlde= /0°° {o e (171> 2o} + 1f@)] > A} dA

Ao 00
= [ = 2ablax+ [ 11> A an
0 Ao
= /\OMfI(/\O)"'/ p£1(A) dA
Ao

< A Psup Mgy (A) 4 sup Apyg (A) / AP d\
A>0 A>0

Ao
P y1-
= sup N’ A)——Xg 7.
Sup 141 )p_ T
Taking A§| K| = psupyso APpys(A), we find
P 1 _1
[ 1@ de < P psup iy () 1)
K p—1" x>0
or

141

p e 1
Py < sup A A)r.
HfHLW(Q) p—1 5 f171(A)

From Proposition B.16, we immediately obtain the following corollary:

COROLLARY B.17. Let p,q > 1 and let f € LPI(Y). Then |f|9 € LP(Q).
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