Proof of Theorem 1, Part 2 In this part we consider Proposition 2 with 1 = r?y/kq
and differentiated both sides by ¢:
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Proposition 0.1 There exists R3 > Ry such that
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Thus, taking also account of Lemma 3, we have for t > R,
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We combine this and
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Then by using the Schwarz inequality, we obtain
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Thus, it follows that
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To give a convenient estimate of J, we put
o(r)= . m riT r(r) =rlogr (1/3 <7 <7) (4.9)
— 7

where m > 0 is a large parameter.

Proposition 0.2 We choose p in (4.5) also to satisfy
2y <p <2
Then there exists Ry > R3 and o > 0 such that for any m > 1 and t > Ry
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Proof First note that the use of Lemma 1 yields
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Since vy < 7, summarizing these inequalities, we conclude the assertion of the
proposition.

O

Conclusion of the proof of Part 2 It follows from Propositions 1 and 2 that for
any m > 1 and t > Ry
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where Lemma 2 is used to show the last inequality. Hence

d
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if Rs > R, is sufficiently large.

By assumption that the support of u is not compact, Rs is able to satisfy
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Then as we see from (4.10), F,,(Rs) goes to co as m — oco. We fix a large m
satisfying F,, -(R5) > 0. Then (4.11) asserts that F,, .(¢) > 0 for t > Rs.
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for t > Rg. This and Lemma 2 with ¢ = 0 establish the conclusion of Theorem 1,
Part 2. O

For f € L*(Q) let w = R(()f. Then u € L*(Q) N HE.(Q) and, as is proved in
Ikebe-Kato [//], there exists C; > 0 depending on Im( such that

lull + [I(e +7)~**Vyul| < CLl ]I (5.2)

Lemma 0.1 Let a <2 in (A.1) and (e+7)f € L*(Q). Then there exists 0 < € < 1
depending on ¢ € 'y such that

v 2
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—Cp
for some Cyy >0

Proof We start the proof showing

2
/ [Voul dr < 0. (5.9)
Q —Cp

/
Let o = (—co)~! in (5.5). Note that (—co(r))™' < 1 and CO(<T))2 < /Oy pu(—co) 734,
Co\T
Then since (5.2) implies
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it follows that
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We shall successively show

/ngm{| vl + |ul? }dx < Cnllle +7)f|* < 00 (5.10)

m=12---

The case m = 0 is already verified by (5.2) and (5.9). To proceed in the next
step, note that
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i [elog(e + 7")]

We put ¢, (r S
J=0 J:

The assertion

lggyéﬁﬂVWWWﬁzo(j:QLnym) (5.11)

follows from assumption: The case j = 0 is already used to show (5.9). Assume that
(5.11) holds for j < m — 1. Then by means of the inequality
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Since [y/—cglog(e +r)]7' ¢ L'(R. ), this implies (5.11) when j = m
Now we put ¢ = ¢, in (5.4). Then since
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ena(r) < pn(r), and (1) = P (5.12)
noting (5.11), we can use the Schwarz inequality to obtain
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Next, we put ¢ = min (5.5). Then since
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applying the Schwarz inequality, letting p — oo and noting (5.11), we have
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for some M, > 0 independent of m. Then it follows from (5.14) that

Pm=l 157 ul?de < 4M, /Q o |ul2dz + (My + My)|(e + ) f|12, (5.15)

Q —C

Apply this to (5.13). Then we obtain
(ITmg[* — 4e® M) /Q pmlul*dr < {1+ €*(My + M) (e + ) fII*.

Choose € so small to satisfy |Im¢|? — 4e2M; > 0 and combine this and (5.14). Then
we can let m — oo to conclude the assertion of the lemma. O

With these preparation, we can follow the line of Eidus [8] to prove Theorem 2.

Proof of Theorem 2 Let {(;, f;} C 'y x L%MO\/TCO)71 converges to {(o, fo} as

7 — o0. Since the other case is easier, we assume that (o = A +10, A € I. Let
u; = R(G) fr-
(i) Asis verified by Lemma 7 or 8, each u; satisfies the radiation conditions.

(i) {wx} is pre-compact in Lio /= iF it is bounded in the same space. In fact,
suppose that {u;} is bounded in Lio \/—TO(Q)v then by the ellipticity of the equation
we can apply Rellich compactness ceriterion to show its pre-compactness in L?(Q2z)
for any R > Ry. On the other hand, Lemma 5 (ii) asserts that for any € > 0

Sup | w;] 4oy =eo.0, < €
J

if R is chosen sufficiently large.
(ili) fu; = upin Lio /= (§2) as j — oo, then ug satisfies the radiation conditions
with ¢ = (p. In fact, since {u;} is bounded in Lio\/—TO(Q;%)’ we see by Lemma 6 that
{0; = Vou; + 2K (x, G)u;}

is also bounded in Li/ s (). So, {6} has a weekly convergent sub-sequence in

the same space. Denote the limit by w, then it follows that
w = Vyug + ZK(z, A £ 10)uy,

and ug is concluded to satisfy the radiation conditions.

(iv) The boundedness {u;} is proved by contradiction. In fact, assume that
there exists a subsequence, which we also write {u;}, such that ||u;||,,, = — o0
as j — oo. Put v; = u;j/||luyll . =c- Then as is explained above, {(j,v;} has a
convergent subsequence, and if we denote the limit by {\ £ 40, vy}, then it satisfies
the eigenvalue problem (2.7) and also

[vollioy=es = 1, [[0rvo + Kivoll%m—lj% < 00, (5.15)
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where K. = K(x,\ £10). The second inequality implies

lim inf \/E_1|8,nvo + Kivo?dS =0
S(r)

r—00

since ) (r) ¢ L*([R,00)) for any R > 0 by Lemma 4.

Comparing this with Theorem 1, we see that vy has a compact support in x € R".
Hence, vy = 0 by the unique continuation property for solutions to (2.7). But this
contradicts to the first equation of (5.15).

(v) If we apply Theorem 1 once more, then {u;} itself is shown to converge. O



