
Proof of Theorem 1, Part 2 In this part we consider Proposition 2 with ψ = rp
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and differentiated both sides by t:
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Then by using the Schwarz inequality, we obtain
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To give a convenient estimate of J2 we put
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where m > 0 is a large parameter.
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Proof First note that the use of Lemma 1 yields∫
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Since γ0 < γ, summarizing these inequalities, we conclude the assertion of the
proposition. 2

Conclusion of the proof of Part 2 It follows from Propositions 1 and 2 that for
any m ≥ 1 and t ≥ R4
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where Lemma 2 is used to show the last inequality. Hence
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if R5 ≥ R4 is sufficiently large.

By assumption that the support of u is not compact, R5 is able to satisfy∫
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for t ≥ R6. This and Lemma 2 with σ = 0 establish the conclusion of Theorem 1,
Part 2. 2

For f ∈ L2(Ω) let u = R(ζ)f . Then u ∈ L2(Ω) ∩ H2
loc(Ω) and, as is proved in

Ikebe-Kato [//], there exists C1 > 0 depending on Imζ such that

∥u∥+ ∥(e+ r)−α/2∇bu∥ ≤ C1∥f∥. (5.2)

Lemma 0.1 Let α ≤ 2 in (A.1) and (e+ r)f ∈ L2(Ω). Then there exists 0 < ϵ < 1
depending on ζ ∈ Γ± such that∫

Ω
(e+ r)ϵ

{ |∇bu|2

−c0
+ |u|2

}
dx ≤ C∞∥(e+ r)f∥2 <∞

for some C∞ > 0

Proof We start the proof showing∫
Ω

|∇bu|2

−c0
dx <∞. (5.9)

Let φ = (−c0)−1 in (5.5). Note that (−c0(r))−1 ≤ 1 and
c′0(r)

c0(r)2
≤

√
C1µ(−c0)−3/4.

Then since (5.2) implies
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ρ→∞
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.

We shall successively show∫
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{ |∇bu|2
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+ |u|2

}
dx < Cm∥(e+ r)f∥2 <∞ (5.10)

m = 1, 2, · · ·.
The case m = 0 is already verified by (5.2) and (5.9). To proceed in the next

step, note that

(e+ r)ϵ = eϵ log(e+r) =
∞∑
j=0

[ϵ log(e+ r)]j

j!
.
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We put φm(r) =
m∑
j=0

[ϵ log(e+ r)]j

j!
.

The assertion

lim inf
ρ→∞

∫
Sρ

φj|∇bu||u|dS = 0 (j = 0, 1, · · · ,m) (5.11)

follows from assumption: The case j = 0 is already used to show (5.9). Assume that
(5.11) holds for j ≤ m− 1. Then by means of the inequality

φm = log(e+ r)
{

1

log(e+ r)
+ ϵ

m−1∑
j=0

(ϵ log(e+ r))j

(j + 1)!

}
≤ log(e+ r)(1 + ϵφm−1)

we have ∫
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φm|∇bu||u|dS ≤
√
−c0 log(e+ ρ)
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(1 + ϵφm−1)
|∇bu|√
−c0

|u|dS.

Since [
√
−c0 log(e+ r)]−1 /∈ L1(R+), this implies (5.11) when j = m.

Now we put φ = φm in (5.4). Then since

φm−1(r) ≤ φm(r), and φ′
m(r) =

ϵφm−1(r)

e+ r
, (5.12)

noting (5.11), we can use the Schwarz inequality to obtain

|Imζ|2
∫
Ω
φm|u|2dx ≤

∫
Ω
φm|f |2dS + ϵ2

∫
Ω
φm−1

|∇bu|2

(e+ r)2
dx <∞. (5.13)

Next, we put φ =
φm

−c0
in (5.5). Then since

φ′ =
ϵφm−1

(−c0)(e+ r)
− φm(−c′0)

c20
≤ φm√

−c0

{
ϵ√

−c0(e+ r)
+

√
C1µ

(−c0)1/4
}

applying the Schwarz inequality, letting ρ→ ∞ and noting (5.11), we have

1

2

∫
Ω
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−c0
|∇bu|2dx ≤M1

∫
Ω
φm{|u|2dx+ |f ||u|+ 2|u|2}dx

+
∫
∂Ω
φm|d(x)||u|2dS <∞, (5.14)

where

M1 = max
x∈Ω

[
max

{ |c− ζ|
−c0

,
1√
−c0

,
ϵ

(−c0)(e+ r)2
+

C1µ√
−c0

}]
.

Note here ∫
∂Ω
φm|d(x)||u|2dS ≤M2∥f∥2
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for some M2 > 0 independent of m. Then it follows from (5.14) that∫
Ω

φm−1

−c0
|∇bu|2dx ≤ 4M1

∫
Ω
φm−1|u|2dx+ (M1 +M2)∥(e+ r)f∥2, (5.15)

Apply this to (5.13). Then we obtain

(|Imζ|2 − 4ϵ2M1)
∫
Ω
φm|u|2dx ≤ {1 + ϵ2(M1 +M3)}∥(e+ r)f∥2.

Choose ϵ so small to satisfy |Imζ|2 − 4ϵ2M1 > 0 and combine this and (5.14). Then
we can let m→ ∞ to conclude the assertion of the lemma. 2

With these preparation, we can follow the line of Eidus [8] to prove Theorem 2.

Proof of Theorem 2 Let {ζj, fj} ⊂ Γ± × L2
(µ0

√
−c0)−1 converges to {ζ0, f0} as

j → ∞. Since the other case is easier, we assume that ζ0 = λ ± i0, λ ∈ I. Let
uj = R(ζj)fk.

(i) As is verified by Lemma 7 or 8, each uj satisfies the radiation conditions.

(ii) {uk} is pre-compact in L2
µ0

√
−c0

if it is bounded in the same space. In fact,

suppose that {uj} is bounded in L2
µ0

√
−c0

(Ω), then by the ellipticity of the equation

we can apply Rellich compactness ceriterion to show its pre-compactness in L2(ΩR)
for any R > R0. On the other hand, Lemma 5 (ii) asserts that for any ϵ > 0

sup
j

∥uj∥µ0
√
−c0,Ω′

R
< ϵ

if R is chosen sufficiently large.

(iii) If uj → u0 in L
2
µ0

√
−c0

(Ω) as j → ∞, then u0 satisfies the radiation conditions

with ζ = ζ0. In fact, since {uj} is bounded in L2
µ0

√
−c0

(Ω′
R), we see by Lemma 6 that

{θj = ∇buj + x̃K(x, ζj)uj}

is also bounded in L2

φ′
√

|k|
−1(Ω′

R). So, {θj} has a weekly convergent sub-sequence in

the same space. Denote the limit by w, then it follows that

w = ∇bu0 + x̃K(x, λ± i0)u0,

and u0 is concluded to satisfy the radiation conditions.

(iv) The boundedness {uj} is proved by contradiction. In fact, assume that
there exists a subsequence, which we also write {uj}, such that ∥uj∥µ0

√
−c0 → ∞

as j → ∞. Put vj = uj/∥uj∥µ0
√
−c0 . Then as is explained above, {ζj, vj} has a

convergent subsequence, and if we denote the limit by {λ± i0, v0}, then it satisfies
the eigenvalue problem (2.7) and also

∥v0∥µ0
√
−c0 = 1, ∥∂rv0 +K±v0∥

φ′
0

√
|k|

−1
,Ω′

R

<∞, (5.15)
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where K± = K(x, λ± i0). The second inequality implies

lim inf
r→∞

∫
S(r)

√
k
−1
|∂rv0 +K±v0|2dS = 0

since φ′
0(r) /∈ L1([R,∞)) for any R > 0 by Lemma 4.

Comparing this with Theorem 1, we see that v0 has a compact support in x ∈ Rn.
Hence, v0 ≡ 0 by the unique continuation property for solutions to (2.7). But this
contradicts to the first equation of (5.15).

(v) If we apply Theorem 1 once more, then {uj} itself is shown to converge. 2
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