
Optimization problems with eigenvalue constraints

*Masaru Ito (Nihon University, Japan)

Bruno F. Lourenço (Institute of Statistical Mathematics, Japan)

SIAM Conference on Optimization
July 1, 2023

Session MS147 “Recent Advancements in Conic Optimization - Part III of III”

*M. Ito and B. F. Lourenço 1 / 18



Eigenvalue programming

Motivation: Consider the optimization problem

minimizex∈V f (x) subject to x ∈ D︸ ︷︷ ︸
simple

, λ(x) ∈ C︸ ︷︷ ︸
eigenvalue constraints

or the feasibility problem

Find x such that x ∈ D, λ(x) ∈ C

f : V → R is a smooth function defined on a real inner product space V.
λ(x) = (λ1(x), . . . , λr (x)) ∈ Rr : “eigenvalues” of x

C,D are “simple” (e.g., polyhedral or projection is computable)

The constraint λ(x) ∈ C can be nonconvex even if C is convex

Applications: Low-rank matrix completion, Inverse eigenvalue problems
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Target problem

Motivation: Consider the optimization problem

minimizex∈V f (x) subject to x ∈ D, λ(x) ∈ C

or the feasibility problem

Find x such that x ∈ D, λ(x) ∈ C

x ∈ D λ(x) ∈ C Both
Optimization problem “NLP” This talk Future interest
Feasibility problem “Simple” “Simple” This talk

Agenda

The projection onto the constraint {x : λ(x) ∈ C} can be done by
projection onto C ∩ ranλ + “spectral decomposition” [Gowda 2019]

Analyze the convergence of projected gradient method for
min{f (x) : λ(x) ∈ C}
Some numerical examples
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Notion of eigenvalues

Examples of vector space V:
V = Sn, the vector space of real symmetric matrices.
λ(x) = (λ1(x), . . . , λn(x)): eigenvalues of x as usual (here λi ≥ λi+1).

V = Cm×n or Rm×n

λ(x) = (σ1(x), . . . , σmin(m,n)(x)): singular values of x (here σi ≥ σi+1).

V: Euclidean Jordan algebra. For instance:

V = Rn, λ(x) = x↓ (rearrangement of x in descending order)
V = Sn, the same as above.
V = R1+n: Euclidean Jordan algebra associated with Lorentz cone
λ(t, x) = (λ+(t, x), λ−(t, x)) =

1√
2
(t + ∥x∥, t − ∥x∥)

Direct product of the above spaces.

We will introduce the Fan-Theobald-von Neumann (FTvN) system [Gowda 2019]
to unify these concepts.
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Preliminary 1: Spectral decomposition

Examples of vector space V:
V = Sn:

x = U Diag(λ(x))UT =
n∑

i=1

λi (x)uiu
T
i , U = (u1, . . . , un) orthogonal

V = Cm×n or Rm×n

x =

min(m,n)∑
i=1

σi (x)uiv
∗
i , {ui}, {vj} orthonormal

V = R1+n: Euclidean Jordan algebra associated with Lorentz cone:

(t, x) = λ+(t, x)e+ + λ−(t, x)e−, e± =
1√
2∥x∥

(±x , ∥x∥)
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Preliminary 2: Simultaneous diagonalization

For V = Sn,
Trace inner product: ⟨x , y⟩Sn := tr(xy).

Spectral decomposition x = U Diag(λ(x))UT , U orthogonal

Fact 1: ⟨x , y⟩Sn ≤ ⟨λ(x), λ(y)⟩Rn holds.

Fact 2: ⟨x , y⟩Sn = ⟨λ(x), λ(y)⟩Rn ⇔ x , y are simultaneously diagonalizable:

∃U orthogonal s.t. x = U Diag(λ(x))UT , y = U Diag(λ(y))UT

Fact (It will be the definition of FTvN system)

For any x , y ∈ Sn, one can construct x ′ ∈ Sn such that

λ(x) = λ(x ′) and ⟨x ′, y⟩Sn = ⟨λ(x ′), λ(y)⟩Rn

Method:

1 Decompose y = Uy Diag(λ(y))U
T
y

2 Replace eigenvalues: x ′ := Uy Diag(λ(x))U
T
y .
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FTvN system

Definition: Fan-Theobald-von Neumann (FTvN) system

Let V be an inner product space and λ : V → Rr .
The tuple (V,Rr , λ) is called a FTvN system if

∥x∥V = ∥λ(x)∥Rr (∥x∥V =
√
⟨x , x⟩V)

⟨x , y⟩V ≤ ⟨λ(x), λ(y)⟩Rr

∀x , y ∈ V , ∃x ′ ∈ V such that λ(x) = λ(x ′) and ⟨x ′, y⟩Sn = ⟨λ(x ′), λ(y)⟩Rr

Target problem: Let (V,Rr , λ) be an FTvN system.

minimizex∈V f (x) subject to λ(x) ∈ C
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Useful fact: projection

Target problem: Let (V,Rr , λ) be an FTvN system.

minimizex∈V f (x) subject to λ(x) ∈ C

Useful fact [Gowda 2019]: Projection of c onto {x : λ(x) ∈ C}

(∗) min
x∈V

1

2
∥x − c∥2V s.t. λ(x) ∈ C︸ ︷︷ ︸

possibly nonconvex

can be obtained using the projection

(∗∗) min
ξ∈Rr

1

2
∥ξ − λ(c)∥2Rr s.t. ξ ∈ C ∩ ranλ︸ ︷︷ ︸

convex cone

Method:
1 ξ∗ := projC∩ranλ(λ(c)) : solution to (∗∗)
2 x∗ ∈ V is such that λ(x∗) = ξ∗, ⟨c , x∗⟩V = ⟨λ(c), λ(x∗)⟩Rr

(when V = Sn: c = Uc Diag(λ(c))U
T
c and set x∗ = Uc Diag(ξ

∗)UT
c )

Simple setting: ranλ = Rr
↓
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Projected gradient method

Target problem:
minimizex∈V f (x) subject to λ(x) ∈ C

We shall analyze the projected gradient method

xk+1 = projλ−1(C)(xk − αk∇f (xk))

More explicit form:

Algorithm: Projected gradient method
1 yk ← xk − αk∇f (xk)
2 ξ∗k ← solution to (∗∗) minξ∈Rr

1
2∥ξ − λ(yk)∥2Rr s.t. ξ ∈ C ∩ ranλ

3 xk+1 ∈ V is such that λ(xk+1) = ξ∗k and ⟨yk , xk+1⟩V = ⟨λ(yk), λ(xk+1)⟩Rr

(when V = Sn: yk = U Diag(λ(yk))U
T and set xk+1 = U Diag(ξ∗k )U

T )
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Convergence results

Target problem: minx∈V f (x) s.t. λ(x) ∈ C
Projected gradient: xk+1 = projλ−1(C)(xk − αk∇f (xk))

Assumptions for convergence results

∇f is L-Lipschitz continuous, αk ∈ [αmin, αmax] where αmin, αmax ∈ (0, 1/L).

C is a semialgebraic set (a union of system polynomial inequalities)

f , λ are semialgebraic functions (i.e. their graphs are semialgebraic sets)

λ is semialgebraic in many cases.

Theorem: Convergence results

Under the above assumptions, let {xk} be the iterates of projected gradient.

Global convergence to stationary point: if {xk} is bounded, then it converges
to x∗ such that 0 ∈ ∇f (x∗) + Nλ−1(C)(x

∗).

Local convergence to optimal solution x∗: if ∥x0 − x∗∥ and f (x0)− f (x∗) are
sufficiently close to zero, {xk} converge to x∗.

Proof is an application of [Attouch et al. 2013].
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Application to feasibility problem

Consider the feasibility problem:

Find x such that x ∈ D, λ(x) ∈ C,

where C,D are convex, semialgebraic and projC∩ranλ(·), projD(·) are computable.

Reformulate as

minimize f (x) =
1

2
dist(x ,D)2 s.t. λ(x) ∈ C

and apply projected gradient method.

The resulting iteration is a weighted alternating projection

yk = (1− αk)xk + αkprojD(xk), xk+1 = projλ−1(C)(yk)

Convergence results follow from the previous slide.
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Numerical example 1: Inverse eigenvalue problem

Inverse eigenvalue problem: Given linear map A : Rd → V , b ∈ V and λ∗ ∈ Rr ,

Find z ∈ Rd such that λ(Az + b) = λ∗

Reformulation with variable transformation x := Az + b is

Find x ∈ V such that x ∈ D := ranA+ b︸ ︷︷ ︸
d-dim affine set

, λ(x) ∈ C := {λ∗}.

We examine traditional setting V = Sn and more structured one

V := R1+n × · · · × R1+n︸ ︷︷ ︸
m times

×Sn,

λ(z1, . . . , zm,X ) := (λ(z1), . . . , λ(zm), λ(X )) ∈ R2m+n, zi ∈ R1+n, X ∈ Sn

with n = 10, m = 1, 3, 5. R1+n is the Jordan algebra associated with Ln
2.
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Numerical example 1: Inverse eigenvalue problem

Algorithm: Projected gradient with stepsize 0.99

x∗ is a known feasible solution such that λ(x∗) has multiplicity two.

Initial point: ∥x0 − x∗∥/∥x∗∥ = rk := 100/2k for a known feasible point x∗.
Rerun increasing k until finding ε-feasible point within 10000 iterations.

rk ∈ [0, 100] estimates the relative distance of local convergence.

Average over 10 random instances:

n m d mean iter mean of rk
10 0 5 10.7 100

16 21.7 100
38 96.7 100

1 6 9.2 100
19 20.3 100
46 99.6 100

5 11 15.2 100
33 51.8 100
77 1087.5 71.3 (max 100, min 0.19)
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Numerical example 2: Intersection of ellipsoids

Suppose that we have m-ellipsoids Ci on Rn (1 ≤ i ≤ m).
Figure: m = 3 ellipsoids

Problem: Find x ∈ Rn such that x ∈ C1 ∩ · · · ∩ Cm
and x belong to the boundary of at least ℓ of these ellipsoids.

ℓ = 0: orange region

ℓ = 1: boundary of the orange reigon

ℓ = 2: blue points
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Numerical example 2: rank constraint reformulation

Let Ci = {x : ∥Qi (x − ci )∥Rn ≤ 1} for some Qi ∈ Sn++ and center ci ∈ Rn

Define the affine map

Ax + b = (1,Q1(x − c1)︸ ︷︷ ︸
∈R1+n

; · · · ; 1,Qi (x − cm)︸ ︷︷ ︸
∈R1+n

) ∈
m∏
i=1

R1+n

Define the eigenvalue

λ(z1, . . . , zm) := (λ(z1), . . . , λ(zm))
↓ ∈ R2m

Problem: Find x ∈ Rn such that x ∈
⋂

1≤i≤ℓ Ci
and x belong to the boundary of at least ℓ of these ellipsoids.

Reformulation:
Find x ∈ Rn such that λ(Ax + b) is nonnegative and has at least ℓ-zeros.

Reformulation

Find z ∈
∏m

i=1 R1+n such that z ∈ D := ranA+ b and
λ(z) ∈ C := {λ ∈ (R2m

+ )↓ | λn−ℓ = · · · = λℓ = 0}
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Numerical example 2: The case ℓ = 1 for three ellipsoids

Projected gradient trajectory from various initial points:
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Numerical example 2: The case ℓ = 2 for three ellipsoids

Projected gradient trajectory from various initial points:
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Summary

Motivation: minimizex∈V f (x) subject to x ∈ D, λ(x) ∈ C
or

Find x such that x ∈ D, λ(x) ∈ C

x ∈ D λ(x) ∈ C Both
Optimization problem “NLP” This talk Future interest
Feasibility problem “Simple” “Simple” This talk

The projection onto the constraint {x : λ(x) ∈ C} can be done by
projC∩ranλ(·) + “spectral decomposition” [Gowda 2019]

Analyze the convergence of projected gradient method for
min{f (x) : λ(x) ∈ C}

Future interests:
Algorithm for more general setting with convergence results
Potential application

Thank you for your attention!
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