Optimization problems with eigenvalue constraints

*Masaru Ito (Nihon University, Japan)

Bruno F. Lourenço (Institute of Statistical Mathematics, Japan)

SIAM Conference on Optimization July 1, 2023 Session MS147 "Recent Advancements in Conic Optimization - Part III of III"

- $f: \mathcal{V} \to \mathbb{R}$ is a smooth function defined on a real inner product space \mathcal{V} .
- $\lambda(x) = (\lambda_1(x), \dots, \lambda_r(x)) \in \mathbb{R}^r$: "eigenvalues" of x
- $\bullet~\mathcal{C},\mathcal{D}$ are "simple" (e.g., polyhedral or projection is computable)
- The constraint $\lambda(x) \in \mathcal{C}$ can be nonconvex even if \mathcal{C} is convex
- Applications: Low-rank matrix completion, Inverse eigenvalue problems

Target problem

Motivation: Consider the optimization problem

```
minimize<sub>x \in \mathcal{V}</sub> f(x) subject to x \in \mathcal{D}, \lambda(x) \in \mathcal{C}
```

or the feasibility problem

Find x such that $x \in \mathcal{D}$, $\lambda(x) \in \mathcal{C}$

	$x \in \mathcal{D}$	$\lambda(x) \in \mathcal{C}$	Both
Optimization problem	"NLP"	This talk	Future interest
Feasibility problem	"Simple"	"Simple"	This talk

Agenda

- The projection onto the constraint {x : λ(x) ∈ C} can be done by projection onto C ∩ ran λ + "spectral decomposition" [Gowda 2019]
- Analyze the convergence of projected gradient method for min{f(x) : λ(x) ∈ C}
- Some numerical examples

Notion of eigenvalues

Examples of vector space \mathcal{V} :

- $\mathcal{V} = S^n$, the vector space of real symmetric matrices. $\lambda(x) = (\lambda_1(x), \dots, \lambda_n(x))$: eigenvalues of x as usual (here $\lambda_i \ge \lambda_{i+1}$).
- $\mathcal{V} = \mathbb{C}^{m \times n}$ or $\mathbb{R}^{m \times n}$ $\lambda(x) = (\sigma_1(x), \dots, \sigma_{\min(m,n)}(x))$: singular values of x (here $\sigma_i \ge \sigma_{i+1}$).

• \mathcal{V} : Euclidean Jordan algebra. For instance:

- $\mathcal{V} = \mathbb{R}^n$, $\lambda(x) = x^{\downarrow}$ (rearrangement of x in descending order)
- $\mathcal{V} = \mathcal{S}^n$, the same as above.
- $\mathcal{V} = \mathbb{R}^{1+n}$: Euclidean Jordan algebra associated with Lorentz cone $\lambda(t, x) = (\lambda_+(t, x), \lambda_-(t, x)) = \frac{1}{\sqrt{2}}(t + ||x||, t ||x||)$
- Direct product of the above spaces.

We will introduce the Fan-Theobald-von Neumann (FTvN) system [Gowda 2019] to unify these concepts.

Preliminary 1: Spectral decomposition

Examples of vector space \mathcal{V} :

• $\mathcal{V} = \mathcal{S}^n$:

$$x = U \operatorname{Diag}(\lambda(x)) U^{T} = \sum_{i=1}^{n} \lambda_{i}(x) u_{i} u_{i}^{T}, \quad U = (u_{1}, \dots, u_{n}) \text{ orthogonal}$$

•
$$\mathcal{V} = \mathbb{C}^{m \times n}$$
 or $\mathbb{R}^{m \times n}$

$$x = \sum_{i=1}^{\min(m,n)} \sigma_i(x) u_i v_i^*, \quad \{u_i\}, \{v_j\} \text{ orthonormal}$$

• $\mathcal{V} = \mathbb{R}^{1+n}$: Euclidean Jordan algebra associated with Lorentz cone:

$$(t,x) = \lambda_+(t,x)e_+ + \lambda_-(t,x)e_-, \quad e_\pm = \frac{1}{\sqrt{2}\|x\|}(\pm x, \|x\|)$$

Preliminary 2: Simultaneous diagonalization

For $\mathcal{V} = \mathcal{S}^n$,

- Trace inner product: $\langle x, y \rangle_{S^n} := tr(xy)$.
- Spectral decomposition $x = U \operatorname{Diag}(\lambda(x)) U^{\mathsf{T}}$, U orthogonal
- Fact 1: $\langle x, y \rangle_{\mathcal{S}^n} \leq \langle \lambda(x), \lambda(y) \rangle_{\mathbb{R}^n}$ holds.
- Fact 2: $\langle x, y \rangle_{\mathcal{S}^n} = \langle \lambda(x), \lambda(y) \rangle_{\mathbb{R}^n} \Leftrightarrow x, y$ are simultaneously diagonalizable:

 $\exists U$ orthogonal s.t. $x = U \operatorname{Diag}(\lambda(x)) U^T$, $y = U \operatorname{Diag}(\lambda(y)) U^T$

Fact (It will be the definition of FTvN system)

For any $x, y \in S^n$, one can construct $x' \in S^n$ such that

$$\lambda(x) = \lambda(x')$$
 and $\langle x', y \rangle_{\mathcal{S}^n} = \langle \lambda(x'), \lambda(y) \rangle_{\mathbb{R}^n}$

Method:

Solution Replace eigenvalues: $x' := U_y \operatorname{Diag}(\lambda(x))U_y^T$.

Definition: Fan-Theobald-von Neumann (FTvN) system

Let \mathcal{V} be an inner product space and $\lambda : \mathcal{V} \to \mathbb{R}^r$. The tuple $(\mathcal{V}, \mathbb{R}^r, \lambda)$ is called a FTvN system if

•
$$\|x\|_{\mathcal{V}} = \|\lambda(x)\|_{\mathbb{R}^r}$$
 $(\|x\|_{\mathcal{V}} = \sqrt{\langle x, x \rangle_{\mathcal{V}}})$

•
$$\langle x,y
angle_{\mathcal{V}}\leq \langle\lambda(x),\lambda(y)
angle_{\mathbb{R}^r}$$

•
$$\forall x, y \in \mathcal{V}, \ \exists x' \in \mathcal{V} \text{ such that } \lambda(x) = \lambda(x') \text{ and } \langle x', y \rangle_{\mathcal{S}^n} = \langle \lambda(x'), \lambda(y) \rangle_{\mathbb{R}^r}$$

Target problem: Let $(\mathcal{V}, \mathbb{R}^r, \lambda)$ be an FTvN system.

minimize_{$x \in \mathcal{V}$} f(x) subject to $\lambda(x) \in \mathcal{C}$

Useful fact: projection

Target problem: Let $(\mathcal{V}, \mathbb{R}^r, \lambda)$ be an FTvN system.

minimize_{$x \in \mathcal{V}$} f(x) subject to $\lambda(x) \in \mathcal{C}$

Useful fact [Gowda 2019]: Projection of *c* onto $\{x : \lambda(x) \in C\}$

(*)
$$\min_{x \in \mathcal{V}} \frac{1}{2} \|x - c\|_{\mathcal{V}}^2$$
 s.t. $\lambda(x) \in \mathcal{C}$

can be obtained using the projection

Target problem:

minimize_{$$x \in \mathcal{V}$$} $f(x)$ subject to $\lambda(x) \in \mathcal{C}$

We shall analyze the projected gradient method

$$x_{k+1} = \operatorname{proj}_{\lambda^{-1}(\mathcal{C})}(x_k - \alpha_k \nabla f(x_k))$$

More explicit form:

Algorithm: Projected gradient method

$$e \xi_k^* \leftarrow \text{solution to } (**) \min_{\xi \in \mathbb{R}^r} \frac{1}{2} \|\xi - \lambda(y_k)\|_{\mathbb{R}^r}^2 \text{ s.t. } \xi \in \mathcal{C} \cap \operatorname{ran} \lambda$$

◎
$$x_{k+1} \in \mathcal{V}$$
 is such that $\lambda(x_{k+1}) = \xi_k^*$ and $\langle y_k, x_{k+1} \rangle_{\mathcal{V}} = \langle \lambda(y_k), \lambda(x_{k+1}) \rangle_{\mathbb{R}^r}$
(when $\mathcal{V} = S^n$: $y_k = U \operatorname{Diag}(\lambda(y_k)) U^T$ and set $x_{k+1} = U \operatorname{Diag}(\xi_k^*) U^T$)

Convergence results

- Target problem: $\min_{x \in \mathcal{V}} f(x)$ s.t. $\lambda(x) \in \mathcal{C}$
- Projected gradient: $x_{k+1} = \text{proj}_{\lambda^{-1}(\mathcal{C})}(x_k \alpha_k \nabla f(x_k))$

Assumptions for convergence results

- ∇f is *L*-Lipschitz continuous, $\alpha_k \in [\alpha_{\min}, \alpha_{\max}]$ where $\alpha_{\min}, \alpha_{\max} \in (0, 1/L)$.
- $\bullet \ \mathcal{C}$ is a semialgebraic set (a union of system polynomial inequalities)
- f, λ are semialgebraic functions (i.e. their graphs are semialgebraic sets)

 λ is semialgebraic in many cases.

Theorem: Convergence results

Under the above assumptions, let $\{x_k\}$ be the iterates of projected gradient.

- Global convergence to stationary point: if $\{x_k\}$ is bounded, then it converges to x^* such that $0 \in \nabla f(x^*) + N_{\lambda^{-1}(\mathcal{C})}(x^*)$.
- Local convergence to optimal solution x^{*}: if ||x₀ − x^{*}|| and f(x₀) − f(x^{*}) are sufficiently close to zero, {x_k} converge to x^{*}.

Proof is an application of [Attouch et al. 2013].

Consider the feasibility problem:

Find x such that
$$x \in \mathcal{D}$$
, $\lambda(x) \in \mathcal{C}$,

where \mathcal{C}, \mathcal{D} are convex, semialgebraic and $\operatorname{proj}_{\mathcal{C}\cap\operatorname{ran}\lambda}(\cdot), \operatorname{proj}_{\mathcal{D}}(\cdot)$ are computable.

Reformulate as

minimize
$$f(x) = \frac{1}{2} \operatorname{dist}(x, \mathcal{D})^2$$
 s.t. $\lambda(x) \in \mathcal{C}$

and apply projected gradient method.

• The resulting iteration is a weighted alternating projection

$$y_k = (1 - \alpha_k) x_k + \alpha_k \operatorname{proj}_{\mathcal{D}}(x_k), \qquad x_{k+1} = \operatorname{proj}_{\lambda^{-1}(\mathcal{C})}(y_k)$$

• Convergence results follow from the previous slide.

Inverse eigenvalue problem: Given linear map $\mathcal{A} : \mathbb{R}^d \to \mathcal{V}$, $b \in \mathcal{V}$ and $\lambda^* \in \mathbb{R}^r$,

Find $z \in \mathbb{R}^d$ such that $\lambda(Az + b) = \lambda^*$

Reformulation with variable transformation x := Az + b is

Find
$$x \in \mathcal{V}$$
 such that $x \in \mathcal{D} := \underbrace{\operatorname{ran} \mathcal{A} + b}_{d\text{-dim affine set}}, \quad \lambda(x) \in \mathcal{C} := \{\lambda^*\}.$

• We examine traditional setting $\mathcal{V} = \mathcal{S}^n$ and more structured one

$$\mathcal{V} := \underbrace{\mathbb{R}^{1+n} \times \cdots \times \mathbb{R}^{1+n}}_{m \text{ times}} \times \mathcal{S}^n,$$

 $\lambda(z_1, \ldots, z_m, X) := (\lambda(z_1), \ldots, \lambda(z_m), \lambda(X)) \in \mathbb{R}^{2m+n}, \ z_i \in \mathbb{R}^{1+n}, \ X \in S^n$ with $n = 10, \ m = 1, 3, 5. \ \mathbb{R}^{1+n}$ is the Jordan algebra associated with \mathcal{L}_2^n .

Numerical example 1: Inverse eigenvalue problem

- Algorithm: Projected gradient with stepsize 0.99
- x^* is a known feasible solution such that $\lambda(x^*)$ has multiplicity two.
- Initial point: $||x_0 x^*|| / ||x^*|| = r_k := 100/2^k$ for a known feasible point x^* . Rerun increasing k until finding ε -feasible point within 10000 iterations.
- $r_k \in [0, 100]$ estimates the relative distance of local convergence.
- Average over 10 random instances:

n	т	d	mean iter	mean of <i>r</i> _k
10	0	5	10.7	100
		16	21.7	100
		38	96.7	100
	1	6	9.2	100
		19	20.3	100
		46	99.6	100
	5	11	15.2	100
		33	51.8	100
		77	1087.5	71.3 (max 100, min 0.19)

Numerical example 2: Intersection of ellipsoids

Suppose that we have *m*-ellipsoids C_i on \mathbb{R}^n $(1 \le i \le m)$. Figure: m = 3 ellipsoids

 Problem: Find x ∈ ℝⁿ such that x ∈ C₁ ∩ · · · ∩ C_m and x belong to the boundary of at least ℓ of these ellipsoids.

- $\ell = 0$: orange region
- $\ell = 1$: boundary of the orange reigon
- $\ell = 2$: blue points

Numerical example 2: rank constraint reformulation

- Let $C_i = \{x : \|Q_i(x c_i)\|_{\mathbb{R}^n} \le 1\}$ for some $Q_i \in \mathcal{S}_{++}^n$ and center $c_i \in \mathbb{R}^n$
- Define the affine map

$$\mathcal{A}x + b = (\underbrace{1, Q_1(x - c_1)}_{\in \mathbb{R}^{1+n}}; \cdots; \underbrace{1, Q_i(x - c_m)}_{\in \mathbb{R}^{1+n}}) \in \prod_{i=1}^m \mathbb{R}^{1+n}$$

• Define the eigenvalue

$$\lambda(z_1,\ldots,z_m) := (\lambda(z_1),\ldots,\lambda(z_m))^{\downarrow} \in \mathbb{R}^{2m}$$

- Problem: Find x ∈ ℝⁿ such that x ∈ ⋂_{1≤i≤ℓ}C_i and x belong to the boundary of at least ℓ of these ellipsoids.
- Reformulation:

Find $x \in \mathbb{R}^n$ such that $\lambda(\mathcal{A}x + b)$ is nonnegative and has at least ℓ -zeros.

Reformulation

Find $z \in \prod_{i=1}^{m} \mathbb{R}^{1+n}$ such that $z \in \mathcal{D} := \operatorname{ran} \mathcal{A} + b$ and $\lambda(z) \in \mathcal{C} := \{\lambda \in (\mathbb{R}^{2m}_+)^{\downarrow} \mid \lambda_{n-\ell} = \cdots = \lambda_{\ell} = 0\}$

Numerical example 2: The case $\ell = 1$ for three ellipsoids

Numerical example 2: The case $\ell = 2$ for three ellipsoids

Summary

Ν

Notivation	minimize $_{x \in \mathcal{V}}$ f	f(x) subject	t to $x \in \mathcal{D}$,	$\lambda(x)\in \mathcal{C}$
		or		
	Find x	such that	$x \in \mathcal{D}, \lambda(x)$	$)\in \mathcal{C}$
		$x \in \mathcal{D}$	$\lambda(x)\in \mathcal{C}$	Both
0	ptimization problem	"NLP"	This talk	Future inter

Optimization problem"NLP"This talkFuture interestFeasibility problem"Simple""Simple"This talk

- The projection onto the constraint $\{x : \lambda(x) \in C\}$ can be done by $\operatorname{proj}_{C \cap \operatorname{ran} \lambda}(\cdot) +$ "spectral decomposition" [Gowda 2019]
- Analyze the convergence of projected gradient method for min{f(x) : λ(x) ∈ C}

Future interests:

- Algorithm for more general setting with convergence results
- Potential application

Thank you for your attention!

References I

- H. Attouch, J. Bolte, and B. F. Svaiter, Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward-backward splitting, and regularized Gauss-Seidel methods, Math. Program., 137:91–129, 2013
- M. Baes. Convexity and differentiability properties of spectral functions and spectral mappings on Euclidean Jordan algebras. Linear Algebra and its Applications, 422:664–700, 2007.
- J. Faraut and A. Korányi. Analysis on symmetric cones. Oxford mathematical monographs. Clarendon Press, Oxford, 1994.
- M. S. Gowda, Optimizing certain combinations of spectral and linear/distance functions over spectral sets, arXiv:1902.06640v2, 2019
- M.-F. R. Jacek Bochnak, Michel Coste. Real Algebraic Geometry. Springer-Verlag, Berlin, Heidel- berg, 1998.
- A. S. Lewis and H. S. Sendov. Nonsmooth analysis of singular values. part I: Theory. Set-Valued Analysis, 13:213 241, 2005.