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Eigenvalue programming

Motivation: Consider the optimization problem

minimizeycy f(x) subjectto x €D, A(x) eC
S~—~— ———
simple eigenvalue constraints

or the feasibility problem

Find x such that x € D, A(x)eC

f:V — R is a smooth function defined on a real inner product space V.
A(x) = (Ai(x), ..., A (x)) € R “eigenvalues” of x
C, D are “simple” (e.g., polyhedral or projection is computable)

The constraint A(x) € C can be nonconvex even if C is convex

Applications: Low-rank matrix completion, Inverse eigenvalue problems
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Target problem

Motivation: Consider the optimization problem
minimize,cy f(x) subjectto x € D, A(x)eC
or the feasibility problem

Find x such that x € D, A(x)e€C

| xeD Ax)ecC Both
Optimization problem “NLP" This talk  Future interest
Feasibility problem “Simple”  “Simple” This talk

Agenda

@ The projection onto the constraint {x : A(x) € C} can be done by
projection onto C Nran A 4+ “spectral decomposition” [Gowda 2019]

@ Analyze the convergence of projected gradient method for
min{f(x) : AM(x) € C}
@ Some numerical examples
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Notion of eigenvalues

Examples of vector space V:

@ V = §", the vector space of real symmetric matrices.
A(x) = (A1(x), ..., An(x)): eigenvalues of x as usual (here \; > Aj11).

o V=Cm*"or R™*"
A(x) = (01(x), - - -, Tmin(m,n)(X)): singular values of x (here o; > 0i1).

@ V: Euclidean Jordan algebra. For instance:

o V =R" \(x) = x+ (rearrangement of x in descending order)

e V =8", the same as above.

o V = R'": Euclidean Jordan algebra associated with Lorentz cone
A(t,x) = (A (t,x), A= (8, x)) = 5 (t + [|x[|, £ = [Ix]])

@ Direct product of the above spaces.

We will introduce the Fan-Theobald-von Neumann (FTvN) system [Gowda 2019]
to unify these concepts. J
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Preliminary 1: Spectral decomposition

Examples of vector space V:
o V=38

x = UDiag(A\(x))UT = Z)\ (x)uiu], U= (u,...,u,) orthogonal

e V=Cm*"or R™*"

min(m,n)

X = Z oi(x)uivi',  {uj},{v;} orthonormal

i=1

e V =R Euclidean Jordan algebra associated with Lorentz cone:

(£,x) = Ap(t,x)es + A (t,x)e,  ex = —=—(£x, [|x]])

\fll I
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Preliminary 2: Simultaneous diagonalization

For V = &7,
@ Trace inner product: (x,y)g. = tr(xy).
@ Spectral decomposition x = U Diag(\(x))UT, U orthogonal
e Fact 1: (x,y)gn < (A(x), A(¥))g~ holds.
@ Fact 2: (x,¥)gn = (A(X), A(y))g» < X,y are simultaneously diagonalizable:

JU orthogonal s.t. x = U Diag(A\(x))UT, y = UDiag(\(y))UT

Fact (It will be the definition of FTvN system)

For any x,y € 8", one can construct x’ € 8" such that

AX) =A) and (', y)sn = (M), AY) e

Method:
@ Decompose y = U, Diag(\(y))U,
@ Replace eigenvalues: x’ := U, Diag(A\(x))U, .
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Definition: Fan-Theobald-von Neumann (FTvN) system

Let V be an inner product space and A: YV — R".
The tuple (V,R", \) is called a FTvN system if

o [Ixlly = IA()le- (lIxlly = V{x,x)y)
o (X, ¥)y < (A(X), A(Y)) g
o Vx,y €V, I € V such that A(x) = A\(x') and (X', ) g0 = (A(X'), A(¥))gr

Target problem: Let (V,R", A) be an FTvN system.

minimizeycy f(x) subject to A(x) € C
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Useful fact: projection

Target problem: Let (V,R", A) be an FTvN system. J

minimizeycy f(x) subject to A(x) € C

Useful fact [Gowda 2019]: Projection of ¢ onto {x : A\(x) € C}

1 )
—|lx — t A
(6) min Slx—cly st A eC

possibly nonconvex

can be obtained using the projection

1
() min 5lE = A(©)

fg, st.£e€CnNran)
Method:
Q &* 1= projenran A(A(€)) @ solution to (xx)
@ x* € Vs such that A\(x*) = £*, (¢, x*),, = (A(c), A(x*))rr
(when V = 8": ¢ = U, Diag(\(c))U/] and set x* = U, Diag(¢*)U/[)

Simple setting: ran A = ]Ri
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Projected gradient method

Target problem:
minimizeycy f(x) subject to A(x) € C

We shall analyze the projected gradient method

Xk+1 = Projy-1cy(xk — axVF(x«)) J

More explicit form:

Algorithm: Projected gradient method

o Yk < Xk — aka(xk)
Q@ & «+ solution to (#*) mingerr 1[1€ — A(yx)|[3- s.t. £ €CNran A

© Xiq1 € Vis such that A(xiv1) = & and (yi, Xk+1)y = (A(Vi)s A(Xk+1)) re
(when V = 8" y, = UDiag(A(yx))UT and set x,+1 = UDiag(&)UT)
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Convergence results

@ Target problem: minyey f(x) s.t. A(x) €C
o Projected gradient: xk+1 = projy—1(cy(xk — @k Vf(x«))

Assumptions for convergence results

e Vf is L-Lipschitz continuous, ax € [@min, ¥max] Where amin, max € (0,1/L).
o C is a semialgebraic set (a union of system polynomial inequalities)

@ f, )\ are semialgebraic functions (i.e. their graphs are semialgebraic sets)

A is semialgebraic in many cases.

Theorem: Convergence results

Under the above assumptions, let {xx} be the iterates of projected gradient.
@ Global convergence to stationary point: if {xx} is bounded, then it converges
to x* such that 0 € Vf(x*) + Ny-1¢)(x).
@ Local convergence to optimal solution x*: if ||xo — x*|| and f(xp) — f(x*) are
sufficiently close to zero, {xx} converge to x*.

Proof is an application of [Attouch et al. 2013].



Application to feasibility problem

Consider the feasibility problem:
Find x such that x € D, A(x) €C,

where C, D are convex, semialgebraic and projenan »(-), projp(+) are computable.

@ Reformulate as
1
minimize f(x) = 3 dist(x,D)? st. A\(x)€C

and apply projected gradient method.
@ The resulting iteration is a weighted alternating projection

Yk = (1 — au)xi + akprojp(Xe),  Xk+1 = Projy-1cy(¥«)

@ Convergence results follow from the previous slide.
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Numerical example 1: Inverse eigenvalue problem

Inverse eigenvalue problem: Given linear map A:RY =V, b€ V and \* € R',
Find z € R? such that \(Az + b) = \* J

Reformulation with variable transformation x := Az + b is
Find x €V suchthat x€ D:= ranA+b, A(x)eC:={\}.
———
d-dim affine set
@ We examine traditional setting VV = §” and more structured one

Voi=RMY x o RN < SM,

m times

Mzt Zm X) = (M21), -+ Mzm), M(X)) € R2™H7 0z e RMFT X € 8™

with n =10, m = 1,3,5. R is the Jordan algebra associated with £3.
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Numerical example 1: Inverse eigenvalue problem

@ Algorithm: Projected gradient with stepsize 0.99

@ x* is a known feasible solution such that A(x*) has multiplicity two.

e Initial point: ||xg — x*||/[|x*|| = rx := 100/2* for a known feasible point x*.

Rerun increasing k until finding e-feasible point within 10000 iterations.
@ rx € [0,100] estimates the relative distance of local convergence.

@ Average over 10 random instances:

n m d meaniter mean of r,
10 0 5 10.7 100
16 21.7 100
38 96.7 100
1 6 9.2 100
19 20.3 100
46 99.6 100
5 11 15.2 100
33 51.8 100
77 1087.5 71.3 (max 100, min 0.19)
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Numerical example 2: Intersection of ellipsoids

Suppose that we have m-ellipsoids C; on R” (1 < i < m).
Figure: m = 3 ellipsoids
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@ Problem: Find x e R" such that xe CiN---NCp
and x belong to the boundary of at least ¢ of these ellipsoids.

@ ¢ = 0: orange region
@ / = 1: boundary of the orange reigon
@ ¢ = 2: blue points

*M. lto and B. F. Lourengo 14 /18



Numerical example 2: rank constraint reformulation

o Let ;= {x:|Qi(x —¢)
@ Define the affine map

re < 1} for some Q; € ST and center ¢; € R"

Ax+b=(1,Qi(x—c1);-; 1, Qi(x — cm)) € HR”"

i=1

cR1+n cR+n

@ Define the eigenvalue
Mziy .o zm) = (M21), ..., Mzm))* € R?™

@ Problem: Find x € R” such that x € ();.,-,C;
and x belong to the boundary of at least ¢ of these ellipsoids.
@ Reformulation:
Find x € R" such that A(Ax + b) is nonnegative and has at least ¢-zeros.

Reformulation

Find z € [, R such that z € D :=ran A+ b and
MNz)eC:={Ne RV | Aoy =---= A =0}
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Numerical example 2: The case ¢ = 1 for three ellipsoids

Projected gradient trajectory from various initial points:

1

— 3

—Q@— iters 17
—Q— iters 14
—@— iters 14
—Q— iters 11
—@— iters 14
—Q@— iters 16
—@— iters 15
—Q@— iters 11
—Q@— iters 10
—Q— iters 12
—@— iters 16
—Q— iters 10
—@— iters 17
—@— iters 17
—@— iters 10
—Q@— iters 17
—Q@— iters 11
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Numerical example 2: The case ¢ = 2 for three ellipsoids

Projected gradient trajectory from various initial points:

1

— 3

—@— iters 28
—Q— iters 55
—@— iters 22
—Q— iters 35
—@— iters 16
—@— iters 28
—@— iters 92
—@— iters 11
—Q@— iters 18
—Q@— iters 29
—@— iters 51
—Q— iters 30
—@— iters 19
—@— iters 25
—Q@— iters 29
—@— iters 19
—Q@— iters 3
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Motivation: minimize,cy f(x) subjectto x € D, A(x) €C
or
Find x such that x € D, A(x)eC

| xeD Ax)ecC Both
Optimization problem “NLP" This talk  Future interest
Feasibility problem “Simple”  “Simple” This talk

@ The projection onto the constraint {x : A(x) € C} can be done by
Projcaran (-) + “spectral decomposition” [Gowda 2019]
@ Analyze the convergence of projected gradient method for
min{f(x) : \(x) € C}

Future interests:
@ Algorithm for more general setting with convergence results
@ Potential application

Thank you for your attention!
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