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Classes of convex cones

Symmetric Cones (self-dual and homogeneous)
N

Homogeneous Cones (Automorphism group acts transitively on interior of cone)
N

Spectrahedral Cones  {x € R": x;A; + - -- + x,A, = O}

N
Hyperbolicity Cones A, (p, e)
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Hyperbolicity cones

Hyperbolic polynomial

A homogeneous polynomial p € R[xy, ..., x,] is said to be hyperbolic along
direction e € R” if

e p(e) >0, and

e for all x € R”, the univariate polynomial t — p(te — x) has all real roots.
These roots are called eigenvalues of x and denoted by

A1(x) > Xa(x) > -+ > Ag(x), where d = degp.

Hyperbolicity cone

For p hyperbolic polynomial along e, define the hyperbolicity cone AL, (p, e) by

Ay = NAii(p,e) i={x eR"| Ai(x) >0,...,Aqs(x) > 0}

We also write the closure of A, by

A= Ni(p,e):={x eR"| A\(x)>0,...,Aq(x) > 0}.

v
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(1) The nonnegative orthant R’ is the hyperbolicity cone A (p, ) with

p(x)=x1--xy, e=(1,...,1)7

o p(te —x) = (t —x1)---(t — xn) has roots A\;(x) = x;.

*M. lto and B. F. Lourengo 4/16



(1) The nonnegative orthant R’ is the hyperbolicity cone A (p, ) with
p(x)=x1--xy, e=(1,...,1)7
o p(te —x) = (t—x1)---(t — x,) has roots A\;(x) = x;.

€ positive semiderinite cone Is the hyperbolicity cone A (p, e) wit
2) Th iti idefini S" is the h bolici A ith

p(x) = det(x), e = the identity matrix /,

@ The roots of P(te — x) = det(t/, — x) are the eigenvalues of symmetric x.
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A (p,e) = {x : roots of t — p(te — x) are nonnegative}

o Ay (p,e) is a closed convex cone.
o Generalized Lax Conjecture: Every hyperbolicity cone is a spectrahedral cone.
@ Hyperbolic Programming [Giiler 1997]:

minimize (c, x) subject to Ax = b, x € A (p,e)
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Derivative relaxation of hyperbolicity cones
For k =1,2,...,d = deg p, denote
DEp(x) := VEp(xX)[e, ..., €] € Rlxy, ..., x].
Note that DXp(x) is a homogeneous polynomial of degree d — k (if k < d).
Lemma (Garding 1959)

p is hyperbolic along e = D%p(x) is hyperbolic along e, and

Ai(p,e) C A (Dip,e).

Definition: Derivative relaxation (Renegar derivative [Renegar 2006])
The hyperbolicity cone

A = A (p, ) .= AL (DEp,e)

is called the k-th derivative relaxation of AL (p, e).

Ay c AP - AP,
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R7 = Ay(p,e) with p(x) =xi -+ x,, = (1,...,1)7.
o The derivative relaxation R7") := A, (Dkp, e) is a hyperbolicity cone.
o DEp(x) = k! E4_k(x) where E4_i(x) is the elementary symmetric polynomial

Ed—k(x) = Z Xiy + 0 Xig_k

n<...<ig—k

of degree d — k.
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R7 = Ay(p,e) with p(x) =xi -+ x,, = (1,...,1)7.

o The derivative relaxation R7") := A, (Dkp, e) is a hyperbolicity cone.

o DEp(x) = k! E4_k(x) where E4_i(x) is the elementary symmetric polynomial

Ed—k(x) = Z Xiy + 0 Xig_k

n<...<ig—k

of degree d — k.

ST =Ny (p,e) with P(x) = det(x), e = I,.

@ The derivative relaxation 51’(/() := Ay (D%p, e) is a hyperbolicity cone.
o Dip(x) = k! Eg_r(A\(X)).
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Known facts on derivative relaxations

o [Renegar 2006]: investigation of derivative relaxations.
° Ri(k) are spectrahedral cones [Sanyal 2011, Brandén 2014].
° 51’(’() are spectrahedral shadows [Saunderson and Parrilo 2015]

° 5_';’(1) is a spectrahedral cone [Saunderson 2018]

Spectrahedral Cones  {x € R": x;A1 + -+ - + x,A, = O}

N
Hyperbolicity Cones A, (p,e)
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Known facts on derivative relaxations

o [Renegar 2006]: investigation of derivative relaxations.
° Ri(k) are spectrahedral cones [Sanyal 2011, Brandén 2014].
° 51’(’() are spectrahedral shadows [Saunderson and Parrilo 2015]

° 5_';’(1) is a spectrahedral cone [Saunderson 2018]

Spectrahedral Cones  {x € R": x;A1 + -+ - + x,A, = O}
N

Hyperbolicity Cones A, (p,e)

Our focus: Geometry of derivative relaxations /\(f), in particular, the structure ofJ

their automorphisms.
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Automorphism groups

The automorphism group of a convex cone K C R" is the set
Aut(K) := {A € GL,(R) : AK = K}.
Aut(K) provides geometric information on K.

We can examine:

@ Homogeneity of K: Every x,y € int(K) admits Ax = y for some A € Aut(K).

@ Lyapunov rank of K [Gowda & Tao 2014]: S(K) := the dimension of the Lie
algebra of Aut(K).

@ Perfectness of K: S(K) > dim K [Orlitzky & Gowda 2016]

Determination of Aut(K) is difficult for general hyperbolicity cones.
— We focus on rank-one generated hyperbolicity cones. J
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Rank-one generated hyperbolicity cones

The rank of x € R” is defined by

rank(x) = “the number of nonzero eigenvalues of x" € {0,1,...,degp} J

@ x € AL(p, e) has full-rank (i.e., rank(x) = deg p) iff x € int Ay(p, e).

@ If x is an extreme direction of Ay (p, e), i.e., cone{x} = R x is a face of
Ai(p,e), then 1 < rank(x) < deg p.

Definition: Rank-one generated hyperbolicity cone

Hyperbolicity cone A;(p, €) is rank-one generated (ROG) if
every extreme direction x of A (p, e) has rank one.

e Symmetric cones (including R’} and S7) are ROG hyperbolicity cones under
an appropriate choice of p.
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Properties of ROG hyperbolicity cones

Proposition

Let A4 (p, e) be a pointed ROG hyperbolicity cone.

@ p is the minimal degree polynomial defining A.

o D¥p is the minimal degree polynomial defining A},

Minimal degree polynomial is unique up to a positive constant factor.
Minimalility is important to analyze the automorphisms:

If p is a minimal degree polynomial defining A, then A € GL,(R) belongs to
Aut(Ay) if and only if Ae € intA; and p(x) = kp(Ax) for some k > 0.
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Main Result

Theorem [I. & Lourengo, 2022]

Suppose that A, = A (p, e) is pointed and ROG. Then,
Aut(AY) = Aut(A,) N {A € GL,(R) : Ae = \e, 3\ > 0}

holds for all k =1,2,...,d — 3 where d := degp.

Some consequences: Under the assumption of the theorem,

o Aut(AM) = Aut(A?) = ... = Aut(AY)
° /\Srl),/\f)7 e ,/\5[173) are not homogeneous.

NOTE: /\(f_Q),/\f_l) are homogeneous.
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Example: Description of Aut(Ri(k)) forn>4

R = Ay(p, e) with p(x) = x1 -+ xp, = (1,...,1)7.

The derivative Ri’(k) = A (DXp, e) is the hyperbolicity cone associated with the

elementary symmetric polynomial >, _ _, - Xx;,_, of degree d — k.

R cRTM .. c RV c RTD c gD

o Aut(R7) = {Diag(d)P : d € R, P permutation matrix}

o AcAut(RT™) = Ac Aut(R7) and Ae = Xe (A > 0)
<= A=Diag(d)Pand dy =dh = =d,.

Fork=1,...,n-3, Aut(Ri’(k)) ={aP:a >0, P permutation matrix}

@ The Lyapunov rank of ]Ri’(k) is 1.
° Ri(k) is not homogeneous, not perfect.



Example: Description of Aut(S! ) for n >4

S = Ay(p,e) with p(x) = det(x), e=1I,

We have the derivative relaxations
sncstWc. st cgninm2) o gnlinmh)

o Aut(S?) ={aly :a >0, M€ GL,(R)}, where Ly(x) = MxMT

o AcAut(ST™M) «—= Ae Aut(S") and A(l,) = Al, (A > 0)
<= A=aly and aMMT = X, (a, A > 0).

Fork=1,...,n—3, Aut(S} (k) ) ={alm : a >0, M orthogonal matrix}

o The Lyapunov rank of 57 is % (<dimS? = "25’").

° Sﬂk) is not homogeneous, not perfect.
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Main result: If A(p,e) is a pointed and rank-one-generated hyperbolicity cone,
then
Aut(AY) = Aut(A,) N {A € GL,(R) : Ae = Ae (A > 0)}

fork=1,2,...,d — 3.

° /\(f) are not homogeneous.
° Aut(Ri’(k)) and Aut(Si’(k)) can be determined
— non-homogeneity, imperfectness
Further questions:
@ Are homogeneous cones ROG?

@ Results for more general hyperbolicity cones.

*M. lto and B. F. Lourengo 15 /16



Thank you for your attention!
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Key Lemma: Gérding's inequality [Gérding 1959]

For any x1,...,xq4 € Ay (p,€), we have

1/d < Vdp(O)[xl, s 7Xd]
- d! |

1/d .

p(x1) -p(xa)

Equality holds iff x1, ..., xg are proportional modulo AL N (—=A.).
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