# Adaptive Step-Size Rule for Conditional Gradient Methods Minimizing Weakly Smooth Objective Functions 

*Masaru Ito (Nihon University, Japan)

Joint work with Zhaosong Lu and Chuan He (University of Minnesota)

SIAM Conference on Optimizaiton
July 22, 2021

## Problem setting

## Composite optimization

$$
\varphi^{*}:=\min _{x \in \mathbb{R}^{n}} \varphi(x), \quad \varphi(x):=f(x)+g(x)
$$

$f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a $C^{1}$ function and $g: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{+\infty\}$ is an Isc convex function.

- Example: $g$ is the indicator function of a compact convex set
- $f$ is possibly non-convex.
- Assumption 1: dom $g$ is bounded (dom $g=\{x: g(x)<+\infty\}$ )
- Assumption 2: $f$ is weakly smooth, i.e., $\nabla f$ is Hölder continuous: $\exists \nu \in(0,1], \exists L_{f}^{(\nu)}>0$ such that

$$
\|\nabla f(x)-\nabla f(y)\|_{*} \leq L_{f}^{(\nu)}\|x-y\|^{\nu}, \quad \forall x, y \in \operatorname{dom} g
$$

where $\|\cdot\|_{*}$ is the dual of $\|\cdot\|$.

## Approximate solutions

For the problem $\varphi^{*}=\min _{x}[\varphi(x)=f(x)+g(x)]$, we define the quantity

$$
\delta(x):=\max _{v}\{\langle\nabla f(x), x-v\rangle+g(x)-g(v)\} \geq 0 .
$$

It is often called the 'Frank-Wolfe gap' at $x$.
(1) $\delta(x)=0$ if and only if $0 \in \nabla f(x)+\partial g(x)$.
(2) $\varphi(x)-\varphi^{*} \leq \delta(x)$ if $f$ is convex.

- Assumption 3: For any fixed $x$, we can solve the following convex optimization (i.e., $\delta(x)$ is computable)

$$
\min _{v \in \mathbb{R}^{n}}\{\langle\nabla f(x), v\rangle+g(v)\}
$$

Example: When $g=\operatorname{ind}_{C}$ for a compact convex set $C$, the above problem is $\min \{\langle\nabla f(x), v\rangle: v \in C\}$

## Conditional gradient method

## Frank-Wolfe method [Frank-Wolfe '56] with regularization [Bach '15]

$x_{0} \in \operatorname{dom} g$
For $t=0,1,2, \ldots$ :
(1) $v_{t} \in \operatorname{Argmin}_{v \in \mathbb{R}^{n}}\left\{\left\langle\nabla f\left(x_{t}\right), v\right\rangle+g(v)\right\}$ (Convex optimization)
(2) Terminate if $\delta_{t}:=\delta\left(x_{t}\right)$ is sufficiently small
(3) $x_{t+1}:=x_{t}+\tau_{t}\left(v_{t}-x_{t}\right) \quad(\in \operatorname{dom} g)$, for some step size $\tau_{t} \in[0,1]$.

## Conditional gradient method

## Frank-Wolfe method [Frank-Wolfe '56] with regularization [Bach '15]

$x_{0} \in \operatorname{dom} g$
For $t=0,1,2, \ldots$ :
(1) $v_{t} \in \operatorname{Argmin}_{v \in \mathbb{R}^{n}}\left\{\left\langle\nabla f\left(x_{t}\right), v\right\rangle+g(v)\right\}$ (Convex optimization)
(2) Terminate if $\delta_{t}:=\delta\left(x_{t}\right)$ is sufficiently small
(3) $x_{t+1}:=x_{t}+\tau_{t}\left(v_{t}-x_{t}\right) \quad(\in \operatorname{dom} g)$, for some step size $\tau_{t} \in[0,1]$.

- Complexity per iteration: Gradient $\nabla f\left(x_{t}\right)$ and convex minimization $\min \left\{\left\langle\nabla f\left(x_{t}\right), v\right\rangle+g(v)\right\}$
- Cheap iteration cost compared to proximal gradient methods (Minimizing linear function $+g$ vs Minimizing quadratic function $+g$ ). $\longrightarrow$ Large scale optimization: Machine learning, Data mining, etc.
- Computable termination criterion $\delta_{t} \leq \varepsilon$
- Slower convergence rate than (accelerated) proximal gradient method $\left(O(1 / t)\right.$ vs $O\left(1 / t^{2}\right)$ for smooth convex $\left.f\right)$.

Key: Step size rule affects the rate of convergence

## Some existing step size rules

The basic tool is the "Descent lemma" :

$$
f(y) \leq f(x)+\langle\nabla f(x), y-x\rangle+\frac{L_{f}^{(\nu)}}{1+\nu}\|y-x\|^{1+\nu}
$$

(1) Exact line search $\tau_{t} \in \operatorname{Argmin}_{\tau \in[0,1]} \varphi\left(x_{t}+\tau\left(v_{t}-x_{t}\right)\right)$. Convergence results follows for many cases.

## Some existing step size rules

The basic tool is the "Descent lemma" :

$$
f(y) \leq f(x)+\langle\nabla f(x), y-x\rangle+\frac{L_{f}^{(\nu)}}{1+\nu}\|y-x\|^{1+\nu}
$$

(1) Exact line search $\tau_{t} \in \operatorname{Argmin}_{\tau \in[0,1]} \varphi\left(x_{t}+\tau\left(v_{t}-x_{t}\right)\right)$.

Convergence results follows for many cases.
(2) $\tau_{t}=\min \left\{1, \frac{\delta_{t}}{L_{f}^{(1)}\left\|x_{t}-v_{t}\right\|^{2}}\right\}[$ Frank \& Wolfe '56] for the case $\nu=1$

When $f$ is smooth, same convergence guarantee as (1) follows.

## Some existing step size rules

The basic tool is the "Descent lemma" :

$$
f(y) \leq f(x)+\langle\nabla f(x), y-x\rangle+\frac{L_{f}^{(\nu)}}{1+\nu}\|y-x\|^{1+\nu}
$$

(1) Exact line search $\tau_{t} \in \operatorname{Argmin}_{\tau \in[0,1]} \varphi\left(x_{t}+\tau\left(v_{t}-x_{t}\right)\right)$.

Convergence results follows for many cases.
(2) $\tau_{t}=\min \left\{1, \frac{\delta_{t}}{L_{f}^{(1)}\left\|x_{t}-v_{t}\right\|^{2}}\right\}[$ Frank \& Wolfe '56] for the case $\nu=1$

When $f$ is smooth, same convergence guarantee as (1) follows.
(3) $\tau_{t}=2 /(t+2)$ [Clarkson 2008], [Hazan 2008], [Nesterov 2018]

Convergence results follows when $f$ is convex.
Advantage: It is parameter free.

## Some existing step size rules

The basic tool is the "Descent lemma" :

$$
f(y) \leq f(x)+\langle\nabla f(x), y-x\rangle+\frac{L_{f}^{(\nu)}}{1+\nu}\|y-x\|^{1+\nu}
$$

(1) Exact line search $\tau_{t} \in \operatorname{Argmin}_{\tau \in[0,1]} \varphi\left(x_{t}+\tau\left(v_{t}-x_{t}\right)\right)$.

Convergence results follows for many cases.
(2) $\tau_{t}=\min \left\{1, \frac{\delta_{t}}{L_{f}^{(1)}\left\|x_{t}-v_{t}\right\|^{2}}\right\}$ [Frank \& Wolfe '56] for the case $\nu=1$

When $f$ is smooth, same convergence guarantee as (1) follows.
(3) $\tau_{t}=2 /(t+2)$ [Clarkson 2008], [Hazan 2008], [Nesterov 2018]

Convergence results follows when $f$ is convex.
Advantage: It is parameter free.
(4) $\tau_{t}=\min \left\{1,\left(\frac{\delta_{t}}{L_{f}^{(\nu)}\left\|x_{t}-v_{t}\right\|^{1+\nu}}\right)^{1 / \nu}\right\}$ [Zhao \& Freund, 2020]

Same convergence guarantee as (1) follows.
It is parameter dependent.

## Proposed method: Adaptive step size rule

$f(y) \leq f(x)+\langle\nabla f(x), y-x\rangle+\frac{L(\varepsilon)}{2}\|y-x\|^{2}+\varepsilon, \quad L(\varepsilon)=\left(\frac{1+\nu}{1-\nu} \frac{1}{2 \varepsilon}\right)^{\frac{1-\nu}{1+\nu}}\left(L_{f}^{(\nu)}\right)^{\frac{2}{1+\nu}}$

## Proposed method: Adaptive step size rule

$x_{0} \in \operatorname{dom} g, L_{-1}>0$
For $t=0,1,2, \ldots$ :
(1) $v_{t} \in \operatorname{Argmin}_{v \in \mathbb{R}^{n}}\left\{\left\langle\nabla f\left(x_{t}\right), v\right\rangle+g(v)\right\}$ (Convex optimization)
(2) Terminate if $\delta_{t}:=\delta\left(x_{t}\right)$ is sufficiently small.
(3) Adaptive line search to compute $\tau_{t} \in[0,1]$ :
(3a) Repeat $i=0,1,2, \ldots$ :

$$
\begin{aligned}
L_{t}^{(i)} & :=2^{i-1} L_{t-1} \\
\tau_{t}^{(i)} & :=\min \left\{1, \frac{\delta_{t} / 2}{L_{t}^{(i)}\left\|x_{t}-v_{t}\right\|^{2}}\right\}
\end{aligned}
$$

$$
x_{t+1}^{(i)}:=x_{t}+\tau_{t}^{(i)}\left(v_{t}-x_{t}\right)
$$

$$
\text { Until } \varphi\left(x_{t+1}^{(i)}\right) \leq \varphi\left(x_{t}\right)-\tau_{t}^{(i)} \delta_{t} / 2+\frac{1}{2} L_{t}^{(i)}\left(\tau_{t}^{(i)}\right)^{2}\left\|x_{t}-v_{t}\right\|^{2}
$$

(3b) $\tau_{t}:=\tau_{t}^{(i)}, \quad L_{t}:=L_{t}^{(i)}$.
(4) $x_{t+1}:=x_{t}+\tau_{t}\left(v_{t}-x_{t}\right) \quad(\in \operatorname{dom} g)$

## Main result: Rate of convergence of proposed method

## Theorem

(i) The number of iterations $T_{\varepsilon}$ to attain $\delta_{t} \leq \varepsilon$ is bounded as follows.

$$
T_{\varepsilon} \leq O(1)\left(\frac{L_{f}^{(\nu)} D_{\text {domg }}^{1+\nu}}{\varepsilon}\right)^{\frac{1}{\nu}} \frac{\Delta_{0}}{\varepsilon},
$$

where $\Delta_{0}=\varphi\left(x_{0}\right)-\varphi^{*}, D_{\text {dom } g}=\operatorname{diam}(\operatorname{dom} g)$, and $O(1)$ is an absolute constant.
(ii) When we further assume $f$ is convex,

$$
T_{\varepsilon} \leq O(1)\left(\frac{L_{f}^{(\nu)} D_{\text {domg }}^{1+\nu}}{\varepsilon}\right)^{\frac{1}{\nu}}
$$

- We can prove the same result for the exact line search (1) or the step size rule (4) of [Zhao-Freund 2020].
- Advantage of proposed method: It is parameter free.


## Faster convergence under error bound

- Some conditions for linear convergence:
(1) $f$ is smooth convex, $g=\operatorname{ind}_{C}$ for a strongly convex set $C$ which does not contain stationary points of $f$ [Levitin \& Polyak, 1966]

$$
\begin{aligned}
& \lambda x+(1-\lambda) y+\frac{\mu}{2} \lambda(1-\lambda)\|x-y\|^{2} u \in C \\
& \quad \forall x, y \in C, \lambda \in[0,1], u \in B(0,1)
\end{aligned}
$$

(2) $f$ is smooth convex, $g$ is a strongly convex function [Ghadimi, 2019]

$$
g(\lambda x+(1-\lambda) y) \leq \lambda g(x)+(1-\lambda) g(y)-\frac{\mu}{2} \lambda(1-\lambda)\|x-y\|^{2}
$$

- Existing step size rules are parameter dependent or analyzed for $\nu=1$.
- We introduce an error bound condition and observe the convergence rate of our proposed method.


## Error bound of subproblems

Assume that there exists $\mu>0$ and $\rho \geq 2$ such that any solution $v^{*} \in \operatorname{Argmin}_{v}[\langle\nabla f(x), v\rangle+g(v)]$ satisfies

$$
[\langle\nabla f(x), v\rangle+g(v)]-\left[\left\langle\nabla f(x), v^{*}\right\rangle+g\left(v^{*}\right)\right] \geq \frac{\mu}{\rho}\left\|v-v^{*}\right\|^{\rho}, \quad \forall v \in \operatorname{dom} g .
$$

## Error bound of subproblems

Assume that there exists $\mu>0$ and $\rho \geq 2$ such that any solution $v^{*} \in \operatorname{Argmin}_{v}[\langle\nabla f(x), v\rangle+g(v)]$ satisfies

$$
[\langle\nabla f(x), v\rangle+g(v)]-\left[\left\langle\nabla f(x), v^{*}\right\rangle+g\left(v^{*}\right)\right] \geq \frac{\mu}{\rho}\left\|v-v^{*}\right\|^{\rho}, \quad \forall v \in \operatorname{dom} g .
$$

## Examples:

(1) $g=\operatorname{ind}_{C}$ for a uniformly convex set $C$ which does not contain stationary points of $f$

$$
\begin{aligned}
& \lambda x+(1-\lambda) y+\frac{c}{2} \lambda(1-\lambda)\|x-y\|^{\rho} u \in C, \\
& \quad \forall x, y \in C, \lambda \in[0,1], u \in B(0,1)
\end{aligned}
$$

(2) $g$ is a uniformly convex function $g(\lambda x+(1-\lambda) y) \leq \lambda g(x)+(1-\lambda) g(y)-\frac{\mu}{2} \lambda(1-\lambda)\left[\lambda^{\rho}+(1-\lambda)^{\rho}\right]\|x-y\|^{\rho}$

## Main result 2: Faster convergence under error bound

## Theorem

Suppose that the error bound condition holds.
(i) The number of iterations $T_{\varepsilon}$ to attain $\delta_{t} \leq \varepsilon$ is bounded by

$$
T_{\varepsilon} \leq O(1)\left(\frac{\rho^{1+\nu}\left(L_{f}^{(\nu)}\right)^{\rho}}{\mu^{1+\nu} \varepsilon^{\rho-1-\nu}}\right)^{\frac{1}{\nu \rho}} \frac{\Delta_{0}}{\varepsilon}
$$

where $\Delta_{0}=\varphi\left(x_{0}\right)-\varphi^{*}$.
(ii) When we further assume $f$ is convex,

$$
T_{\varepsilon} \leq \begin{cases}O(1) \frac{L_{f}^{(1)}}{\mu} \log \frac{\Delta_{0}}{\varepsilon} & (\rho=\nu+1=2): \text { linear convergence } \\ O(1)\left(\frac{\rho^{1+\nu}\left(L_{f}^{(\nu)}\right) \rho}{\mu^{1+\nu} \varepsilon^{\rho-1-\nu}}\right)^{\frac{1}{\nu \rho}} & \text { (otherwise) }\end{cases}
$$

## Summary

- Proposed step size rule does not rely on parameters in the problem.
- The iteration complexity bound is the same as the one for the exact line search.

Further interests

- Improvements of oracle complexity
- Analysis under more general setting than Hölder condition

$$
f(y) \leq f(x)+\langle\nabla f(x), y-x\rangle+\frac{L(\varepsilon)}{2}\|y-x\|^{2}+\varepsilon, \quad L(\varepsilon)=\left(\frac{1+\nu}{1-\nu} \frac{1}{2 \varepsilon}\right)^{\frac{1-\nu}{1+\nu}}\left(L_{f}^{(\nu)}\right)^{\frac{2}{1+\nu}}
$$

## Summary

- Proposed step size rule does not rely on parameters in the problem.
- The iteration complexity bound is the same as the one for the exact line search.

Further interests

- Improvements of oracle complexity
- Analysis under more general setting than Hölder condition

$$
f(y) \leq f(x)+\langle\nabla f(x), y-x\rangle+\frac{L(\varepsilon)}{2}\|y-x\|^{2}+\varepsilon, \quad L(\varepsilon)=\left(\frac{1+\nu}{1-\nu} \frac{1}{2 \varepsilon}\right)^{\frac{1-\nu}{1+\nu}}\left(L_{f}^{(\nu)}\right)^{\frac{2}{1+\nu}}
$$

Thank you for your attention!

## References I

- Francis Bach, Duality between subgradient and conditional gradient methods, SIAM J. Optim., 25(1):115-129, 2015.
- Jonathan M. Borwein, Guoyin Li, and Liangjin Yao, Analysis of the convergence rate for the cyclic projection algorithm applied to basic semi-algebraic convex sets, SIAM J. Optim., 24(1):498-527, 2014.

國 J. C. Dunn, Rates of convergence for conditional gradient algorithms near singular and nonsingular extremals, SIAM J. Control Optim., 17:187-211, 1979.
: Marguerite Frank Philip Wolfe, An algorithm for quadratic programming, Naval Research Logistics Quarterly, 3:95-110, 1956.
R Robert M. Freund and Paul Grigas, New analysis and results for the Frank-Wolfe method, Math. Program., 155:199-230, 2016.
Dan Garber and Elad Hazan, Faster Rates for the Frank-Wolfe Method over Strongly-Convex Sets, Proceedings of the 32nd International Conference on Machine Learning, 37:541-549, 2015.

## References II

围 Zaid Harchaoui, Anatoli Juditsky, Arkadi Nemirovski, Conditional gradient algorithms for norm-regularized smooth convex optimization, Math. Program., 152:75-112, 2015.

- Saeed Ghadimi, Conditional gradient type methods for composite nonlinear and stochastic optimization, Math. Program., 173:431-464, 2019.
Cristóbal Guzmán and Arkadi Nemirovski, On lower complexity bounds for large-scale smooth convex optimization, J. Complexity 31:1-14, 2015.
囯 Martin Jaggi, Revisiting Frank-Wolfe: Projection-Free Sparse Convex Optimization, Proceedings of the 30th International Conference on Machine Learning, 28:427-435, 2013.
Thomas Kerdreux, Alexandre d'Aspremont, and Sebastian Pokutta, Projection-free optimization on uniformly convex sets, ArXiv preprint, arXiv:2004.11053v2, 2020.
E. E. Levitin and B. T. Polyak, Constrained Minimization Methods, USSR Computational Mathematics and Mathematical Physics, 6(5):1-50, 1966.


## References III

目 Yu Nesterov，Universal gradient methods for convex optimization problems， Math．Program．，152：381－404， 2015.
囯 Yu．Nesterov，Complexity bounds for primal－dual methods minimizing the model of objective function，Math．Program．，171：311－330， 2018.
䍰 Y．Nesterov and B．T．Polyak，Cubic regularization of Newton method and its global performance，Math．Program．，108：177－205， 2006.
圊 C．Zălinescu，Convex analysis in general vector spaces，World Scientific， Singapore， 2002.
Renbo Zhao and Robert M．Freund，Analysis of the Frank－Wolfe method for logarithmically－homogeneous barriers，with an extension，ArXiv preprint， arXiv：2010．08999v1， 2020.

## Numerical example

$$
\begin{array}{ll}
\min & f(x)=\frac{1}{p}\|A x-b\|_{p}^{p} \\
\text { s.t. } & \|x\|_{q} \leq 1
\end{array}
$$

- $p>1$ and $q>1$.
- $A \in \mathbb{R}^{n \times n}$ is symmetric, $n=1000, \lambda_{\min }(A)=1, \lambda_{\max }(A)=100$.
- $b=A \bar{x}$ with $\|\bar{x}\|_{q}=10$.
- Initial point $x_{0}=0$; Termination criterion: $\delta_{t} \leq 10^{-5} \delta_{0}$
- Compared three step size rules:
(1) Proposed method with the Euclidean norm $\|\cdot\|_{2}$.
(2) ZF20: $\tau_{t}=\min \left\{1,\left(\frac{\delta_{t}}{L_{f}^{(\nu)}\left\|x_{t}-v_{t}\right\|^{1+\nu}}\right)^{1 / \nu}\right\}$ [Zhao \& Freund 2020] with the Euclidean norm $\|\cdot\|_{2}, \nu=p-1$,
$L_{f}^{(\nu)}=2^{2-p} n \frac{(p-1)(2-p)}{2 p} \lambda_{\max }(A)^{p}$ when $p \in(1,2]$.
$L_{f}^{(\nu)}$ is unclear for $p>2$.
(3) $\tau_{t}=2 /(t+2)$.
- Implemented by Matlab on an Apple desktop with the 3.0 GHz Intel Xeon E5-1680v2 processor and 64GB of RAM.


## Numerical example

|  |  | Average of CPU time (sec) |  | Average of number of iterations |  |  |  |
| :---: | :---: | :--- | :--- | :--- | :--- | :--- | :--- |
| $q$ | $p$ | Proposed alg | ZF20 | $\frac{2}{t+2}$ | Proposed alg | ZF20 | $\frac{2}{t+2}$ |
| 1.5 | 1.3 | 0.016 | 0.55 | 0.21 | 24.0 | 1129.3 | 437.9 |
|  | 1.6 | 0.0044 | 0.004 | 0.2 | 5.2 | 7.1 | 442.0 |
|  | 2.0 | 0.0033 | 0.0029 | 0.18 | 6.0 | 4.9 | 407.2 |
|  | 3.0 | 0.0086 | NA | 0.15 | 11.3 | NA | 363.8 |
| 2.0 | 1.3 | 0.038 | 0.29 | 0.2 | 64.4 | 677.5 | 452.3 |
|  | 1.6 | 0.0053 | 0.0032 | 0.18 | 6.2 | 5.1 | 422.6 |
|  | 2.0 | 0.0023 | 0.002 | 0.16 | 4.0 | 4.0 | 411.1 |
|  | 3.0 | 0.0028 | NA | 0.15 | 5.2 | NA | 378.9 |
| 3.0 | 1.3 | 0.25 | 2.0 | 0.37 | 413.4 | 4419.7 | 776.9 |
|  | 1.6 | 0.01 | 0.017 | 0.21 | 12.9 | 33.7 | 418.8 |
|  | 2.0 | 0.0041 | 0.0031 | 0.18 | 6.7 | 6.3 | 408.2 |
|  | 3.0 | 0.0061 | NA | 0.16 | 6.3 | NA | 381.2 |

Table: Numerical results (average over 10 instances). RED indicates the best.

## Upper bound of the total number of line search iterations

As long as $\min _{0 \leq i \leq t} \delta_{i} \geq \varepsilon$, the total number of inner iterations in the line search until $t$-th outer iteration is bounded by

$$
2 t+2+\left[\log _{2} \frac{2 \bar{L}(\varepsilon)}{L_{-1}}\right]_{+},
$$

where $[\alpha]_{+}=\max (0, \alpha)$ and

$$
\bar{L}(\varepsilon)=\left\{\begin{array}{c}
\max \left\{\left(\frac{1-\nu}{1+\nu} \frac{1}{\varepsilon}\right)^{\frac{1-\nu}{1+\nu}}\left(L_{f}^{(\nu)}\right)^{\frac{2}{1+\nu}},\left(\frac{2(1-\nu)}{1+\nu}\right)^{\frac{1-\nu}{2 \nu}}\left(L_{f}^{(\nu)}\right)^{\frac{1}{\nu}}\left(\frac{D_{\text {dom } g}}{\varepsilon}\right)^{\frac{1-\nu}{\nu}}\right\} \\
\text { if domg} \text { is bounded, } \\
\max \left\{\left(\frac{1-\nu}{1+\nu} \frac{1}{\varepsilon}\right)^{\frac{1-\nu}{1+\nu}}\left(L_{f}^{(\nu)}\right)^{\frac{2}{1+\nu}},\left(\frac{2(1-\nu)}{1+\nu}\right)^{\frac{1-\nu}{2 \nu}}\left(L_{f}^{(\nu)}\right)^{\frac{1}{\nu}}\left(\frac{\rho}{\kappa \varepsilon^{\rho-1}}\right)^{\frac{1-\nu}{\rho \nu}}\right\}
\end{array}\right.
$$

if error bound condition holds.

