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Problem setting

Composite optimization

"= mino(x), p(x) = f(x) + g(x),

f:R"— Risa C! function and g : R" — R U {400} is an Isc convex function.

o Example: g is the indicator function of a compact convex set

@ f is possibly non-convex.

@ Assumption 1: dom g is bounded (dom g = {x : g(x) < +00})

@ Assumption 2: f is weakly smooth, i.e., Vf is Holder continuous:
3 € (0,1], L) > 0 such that

IVF(x) = V). < L]x = y[|", Vx,y € domg,

where || - ||« is the dual of || - ||.
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Approximate solutions

For the problem ¢* = min,[p(x) = f(x) + g(x)], we define the quantity
0(x) := max{({VF(x),x —v) + g(x) — g(v)} = 0.
It is often called the ‘Frank-Wolfe gap’ at x.

(1) 0(x) =0 if and only if 0 € V£ (x) + dg(x).
(2) p(x) — p* < d6(x) if f is convex. J

@ Assumption 3: For any fixed x, we can solve the following convex
optimization (i.e., 6(x) is computable)

min {(VF(x), v) + g(v)}

Example: When g = ind¢ for a compact convex set C, the above problem is
min{(Vf(x),v) : v e C}
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Conditional gradient method

Frank-Wolfe method [Frank-Wolfe '56] with regularization [Bach '15]

Xp € dom g
Fort=0,1,2,...:
(1) v¢ € Argmin, cpa{(VF(x:),v) + g(v)} (Convex optimization)
(2) Terminate if d; := d(x;) is sufficiently small
(3) xt+1 :=x¢ + 7e(vt — x¢) (€ domg), for some step size 7 € [0, 1].

~— —
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o Complexity per iteration: Gradient Vf(x;) and convex minimization
min{(Vf(x),v) + g(v)}

@ Cheap iteration cost compared to proximal gradient methods
(Minimizing linear function+g vs Minimizing quadratic function+g).
— Large scale optimization: Machine learning, Data mining, etc.

o Computable termination criterion 0, < ¢

@ Slower convergence rate than (accelerated) proximal gradient method
(O(1/t) vs O(1/t?) for smooth convex f).

Key: Step size rule affects the rate of convergence J
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Some existing step size rules

The basic tool is the “Descent lemma” : ®)
L 1%
FY) < £+ (VF(x),y =)+ T lly = x|+

(1) Exact line search 7 € Argmin_cpo 1) (Xt + 7(ve — X¢)).
Convergence results follows for many cases.
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Some existing step size rules

The basic tool is the “Descent lemma” : ®)
1%

Fy) < F) +(VF(x),y = x) + 1 ly = x

|1+1/'

(1) Exact line search 7 € Argmin_cpo 1) (Xt + 7(ve — X¢)).
Convergence results follows for many cases.

(2) 7t = min { %

1, —— o
LO1x — vel|?

} [Frank & Wolfe '56] for the case v =1
When f is smooth, same convergence guarantee as (1) follows.
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Some existing step size rules

The basic tool is the “Descent lemma” : ®)
L 1%
FY) < £+ (VF(x),y =)+ T lly = x|+ J

(1) Exact line search 7 € Argmin_cpo 1) (Xt + 7(ve — X¢)).
Convergence results follows for many cases.

(2) 7+ = min {1, (1)5t} [Frank & Wolfe '56] for the case v =1
L7 llxe — vell?
When f is smooth, same convergence guarantee as (1) follows.
(3) 7+ =2/(t +2) [Clarkson 2008], [Hazan 2008], [Nesterov 2018]
Convergence results follows when f is convex.
Advantage: It is parameter free.
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: !
(4) 7+ =min< 1, ( ”
L

X — vel [PV
Same convergence guarantee as (1) follows.
It is parameter dependent.

1/v
) [Zhao & Freund, 2020]
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Proposed method: Adaptive step size rule

() < FOMHT )y =0+ ly—xlPe, 16 = (F ) (L(fu))HZUJ

2

Proposed method: Adaptive step size rule

xp €domg, L 1 >0
Fort=0,1,2,...:
(1) v¢ € Argmin, cpa{(VF(x:),v) + g(v)} (Convex optimization)
(2) Terminate if d; := 0(x;) is sufficiently small.
(3) Adaptive line search to compute 7; € [0, 1]:
(3a) Repeat i =0,1,2,...:
L9 =01y,

i i -
A0 m.n{l,m}
(i) . .

X1 = Xe + '’ (ve — xt)
Until o(x2;) < o(xe) — 706:/2 + 1L (7)) 1x: — well?
@Bb) m =7, L =10,
(4) xt41 1= X + 7e(ve — x) (€ domg)
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Main result: Rate of convergence of proposed method

Theorem

(i) The number of iterations T, to attain J; < € is bounded as follows.

1
L(V)DI-H/ v A
T. < O(1) (—f d‘”““”) =

’
€ 3

where Ay = ¢(x0) — ¢*, Ddom g = diam(dom g), and O(1) is an absolute
constant.

(i) When we further assume f is convex,

L(”)Dl—H/ %
7. < 0(1) <—f d°mg> .

- 5

@ We can prove the same result for the exact line search (1) or the step size
rule (4) of [Zhao-Freund 2020].

@ Advantage of proposed method: It is parameter free.
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Faster convergence under error bound

@ Some conditions for linear convergence:

(1) f is smooth convex, g = ind¢ for a strongly convex set C which does not

contain stationary points of f [Levitin & Polyak, 1966]

A+ (1= Ay + 2A1 - N\)|x — y|Pue C,
Vx,y € C, A€ [0,1], ue B(0,1)
(2) f is smooth convex, g is a strongly convex function [Ghadimi, 2019]
g(Ax + (1= N)y) < Ag(x) + (1= N)gly) = 5AM1 = A)Ix -y

o Existing step size rules are parameter dependent or analyzed for v = 1.

@ We introduce an error bound condition and observe the convergence rate of
our proposed method.

Error bound of subproblems

Assume that there exists ¢ > 0 and p > 2 such that
any solution v* € Argmin, [(Vf(x), v) + g(v)] satisfies

(Y760, )+ 8()] = (V700 v") + 8] 2 Ellv =P, v € domg.
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Error bound of subproblems

Assume that there exists ¢ > 0 and p > 2 such that
any solution v* € Argmin, [(Vf(x), v) + g(v)] satisfies

[(VF00.v) + (] = [(F0).v*) + ()] 2 Ellv = v, v € domg.

Examples:
(1) g = ind¢ for a uniformly convex set C which does not contain stationary
points of f
A4 (1=A)y + 5M1=N)|x —y|fuec C,
Vx,y € C, A€ 0,1], u e B(0,1)
(2) g is a uniformly convex function
g0+ (1— \)y) < Ag(x) + (1 — g(y) — EAL = NIV + (1= A7 x — y|”
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Main result 2: Faster convergence under error bound

Theorem

Suppose that the error bound condition holds.
(i) The number of iterations T. to attain d; < ¢ is bounded by

1
1+v (V) ve
p (L) Ao
TE S O(l) <u1+l/gp—1—l/ &
where Ag = ¢(xp) — ™.
(i) When we further assume f is convex,

)

L(l) fiyg
0(1)—log - (p=v+1=2): linear convergence,
1

T. <
€ = 1+ () ve
p (L )p :
O(l) (W (0therw1se).
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@ Proposed step size rule does not rely on parameters in the problem.

@ The iteration complexity bound is the same as the one for the exact line
search.

Further interests
@ Improvements of oracle complexity

@ Analysis under more general setting than Holder condition

f(9) < ORIy =0+ ly=xlPre L) = (TEog) (Li”))ﬂ
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@ Proposed step size rule does not rely on parameters in the problem.

@ The iteration complexity bound is the same as the one for the exact line
search.

Further interests
@ Improvements of oracle complexity

@ Analysis under more general setting than Holder condition

f(9) < ORIy =0+ ly=xlPre L) = (TEog) (Li”))ﬂ

Thank you for your attention!
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Numerical example

min  f(x) = %HAX - bl
st [x]lq < 1.

p>1landgqg>1.
A € R™" is symmetric, n = 1000, Apin(A) = 1, Amax(A) = 100.
b = Ax with ||x||q = 10.
Initial point xo = 0; Termination criterion: &, < 10756
Compared three step size rules:

© Proposed method with the Euclidean norm || - ||2.

| xe —ve 1+

1/v
@ ZF20: 7: = min {1, (57> } [Zhao & Freund 2020] with the

Euclidean norm || - |2, v =p—1,
(P=1)(2—p)

L) =22Pn 2% Ama(A)P when p € (1,2].
L;V) is unclear for p > 2.
Q =2/(t+2).
@ Implemented by Matlab on an Apple desktop with the 3.0GHz Intel Xeon
E5-1680v2 processor and 64GB of RAM.
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Numerical example

Average of CPU time (sec) Average of number of iterations
q p Proposed alg  ZF20 ?22 Proposed alg  ZF20 ?22
15 1.3 | 0.016 0.55 0.21 || 24.0 1129.3 437.9
1.6 || 0.0044 0.004 0.2 | 5.2 7.1 442.0
2.0 || 0.0033 0.0029 0.18 || 6.0 4.9 407.2
3.0 || 0.0086 NA 0.15 || 11.3 NA 363.8
20 1.3 0.038 0.29 0.2 || 64.4 6775 4523
1.6 || 0.0053 0.0032 0.18 || 6.2 5.1 422.6
2.0 || 0.0023 0.002 0.16 || 4.0 4.0 411.1
3.0 || 0.0028 NA 0.15 || 5.2 NA 378.9
30 131025 2.0 0.37 || 413.4 4419.7 7769
1.6 || 0.01 0.017 0.21 || 129 33.7 418.8
2.0 || 0.0041 0.0031 0.18 || 6.7 6.3 408.2
3.0 || 0.0061 NA 0.16 || 6.3 NA 381.2

Table: Numerical results (average over 10 instances). RED indicates the best.
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Upper bound of the total number of line search iterations

As long as ming<j<: d; > €, the total number of inner iterations in the line search
until t-th outer iteration is bounded by

2L
2t +2+ {Iog2 (6)} ,
Ly |,

where [a];+ = max(0, «) and

ma{ (4222) ™ (W), (B2) T ()3 (Bee) T

L(c) = if dom g is bounded,

177: V)2 —v 177"” v)y= 7
max{ (1£2) ™ W, (852) T W) () |

if error bound condition holds.
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