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Problem setting

Composite optimization

φ∗ := min
x∈Rn

φ(x), φ(x) := f (x) + g(x),

f : Rn → R is a C 1 function and g : Rn → R ∪ {+∞} is an lsc convex function.

Example: g is the indicator function of a compact convex set

f is possibly non-convex.

Assumption 1: dom g is bounded (dom g = {x : g(x) < +∞})
Assumption 2: f is weakly smooth, i.e., ∇f is Hölder continuous:

∃ν ∈ (0, 1], ∃L(ν)f > 0 such that

∥∇f (x)−∇f (y)∥∗ ≤ L
(ν)
f ∥x − y∥ν , ∀x , y ∈ dom g ,

where ∥ · ∥∗ is the dual of ∥ · ∥.
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Approximate solutions

For the problem φ∗ = minx [φ(x) = f (x) + g(x)], we define the quantity

δ(x) := max
v

{⟨∇f (x), x − v⟩+ g(x)− g(v)} ≥ 0.

It is often called the ‘Frank-Wolfe gap’ at x .

(1) δ(x) = 0 if and only if 0 ∈ ∇f (x) + ∂g(x).

(2) φ(x)− φ∗ ≤ δ(x) if f is convex.

Assumption 3: For any fixed x , we can solve the following convex
optimization (i.e., δ(x) is computable)

min
v∈Rn

{⟨∇f (x), v⟩+ g(v)}

Example: When g = indC for a compact convex set C , the above problem is
min{⟨∇f (x), v⟩ : v ∈ C}
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Conditional gradient method

Frank-Wolfe method [Frank-Wolfe ’56] with regularization [Bach ’15]

x0 ∈ dom g
For t = 0, 1, 2, . . .:
(1) vt ∈ Argminv∈Rn{⟨∇f (xt), v⟩+ g(v)} (Convex optimization)
(2) Terminate if δt := δ(xt) is sufficiently small
(3) xt+1 := xt + τt(vt − xt) (∈ dom g), for some step size τt ∈ [0, 1].

Complexity per iteration: Gradient ∇f (xt) and convex minimization
min{⟨∇f (xt), v⟩+ g(v)}
Cheap iteration cost compared to proximal gradient methods
(Minimizing linear function+g vs Minimizing quadratic function+g).
−→ Large scale optimization: Machine learning, Data mining, etc.

Computable termination criterion δt ≤ ε

Slower convergence rate than (accelerated) proximal gradient method
(O(1/t) vs O(1/t2) for smooth convex f ).

Key: Step size rule affects the rate of convergence
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Some existing step size rules

The basic tool is the “Descent lemma” :

f (y) ≤ f (x) + ⟨∇f (x), y − x⟩+
L
(ν)
f

1 + ν
∥y − x∥1+ν .

(1) Exact line search τt ∈ Argminτ∈[0,1] φ(xt + τ(vt − xt)).
Convergence results follows for many cases.

(2) τt = min

{
1,

δt

L
(1)
f ∥xt − vt∥2

}
[Frank & Wolfe ’56] for the case ν = 1

When f is smooth, same convergence guarantee as (1) follows.

(3) τt = 2/(t + 2) [Clarkson 2008], [Hazan 2008], [Nesterov 2018]
Convergence results follows when f is convex.
Advantage: It is parameter free.

(4) τt = min

1,

(
δt

L
(ν)
f ∥xt − vt∥1+ν

)1/ν
 [Zhao & Freund, 2020]

Same convergence guarantee as (1) follows.
It is parameter dependent.
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Proposed method: Adaptive step size rule

f (y) ≤ f (x)+⟨∇f (x), y − x⟩+L(ε)

2
∥y−x∥2+ε, L(ε) =

(
1 + ν

1− ν

1

2ε

) 1−ν
1+ν

(L
(ν)
f )

2
1+ν

Proposed method: Adaptive step size rule

x0 ∈ dom g , L−1 > 0
For t = 0, 1, 2, . . .:
(1) vt ∈ Argminv∈Rn{⟨∇f (xt), v⟩+ g(v)} (Convex optimization)
(2) Terminate if δt := δ(xt) is sufficiently small.
(3) Adaptive line search to compute τt ∈ [0, 1]:

(3a) Repeat i = 0, 1, 2, . . .:

L
(i)
t := 2i−1Lt−1

τ
(i)
t := min

{
1, δt/2

L
(i)
t ∥xt−vt∥2

}
x
(i)
t+1 := xt + τ

(i)
t (vt − xt)

Until φ(x
(i)
t+1) ≤ φ(xt)− τ

(i)
t δt/2 +

1
2L

(i)
t (τ

(i)
t )2∥xt − vt∥2

(3b) τt := τ
(i)
t , Lt := L

(i)
t .

(4) xt+1 := xt + τt(vt − xt) (∈ dom g)
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Main result: Rate of convergence of proposed method

Theorem

(i) The number of iterations Tε to attain δt ≤ ε is bounded as follows.

Tε ≤ O(1)

(
L
(ν)
f D1+ν

dom g

ε

) 1
ν

∆0

ε
,

where ∆0 = φ(x0)− φ∗, Ddom g = diam(dom g), and O(1) is an absolute
constant.

(ii) When we further assume f is convex,

Tε ≤ O(1)

(
L
(ν)
f D1+ν

dom g

ε

) 1
ν

.

We can prove the same result for the exact line search (1) or the step size
rule (4) of [Zhao-Freund 2020].

Advantage of proposed method: It is parameter free.
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Faster convergence under error bound

Some conditions for linear convergence:
(1) f is smooth convex, g = indC for a strongly convex set C which does not
contain stationary points of f [Levitin & Polyak, 1966]

λx + (1− λ)y + µ
2 λ(1− λ)∥x − y∥2u ∈ C ,

∀x , y ∈ C , λ ∈ [0, 1], u ∈ B(0, 1)
(2) f is smooth convex, g is a strongly convex function [Ghadimi, 2019]

g(λx + (1− λ)y) ≤ λg(x) + (1− λ)g(y)− µ
2 λ(1− λ)∥x − y∥2

Existing step size rules are parameter dependent or analyzed for ν = 1.

We introduce an error bound condition and observe the convergence rate of
our proposed method.

Error bound of subproblems

Assume that there exists µ > 0 and ρ ≥ 2 such that
any solution v∗ ∈ Argminv [⟨∇f (x), v⟩+ g(v)] satisfies

[⟨∇f (x), v⟩+ g(v)]− [⟨∇f (x), v∗⟩+ g(v∗)] ≥ µ

ρ
∥v − v∗∥ρ, ∀v ∈ dom g .
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[⟨∇f (x), v⟩+ g(v)]− [⟨∇f (x), v∗⟩+ g(v∗)] ≥ µ

ρ
∥v − v∗∥ρ, ∀v ∈ dom g .

Examples:
(1) g = indC for a uniformly convex set C which does not contain stationary
points of f

λx + (1− λ)y + c
2λ(1− λ)∥x − y∥ρu ∈ C ,

∀x , y ∈ C , λ ∈ [0, 1], u ∈ B(0, 1)
(2) g is a uniformly convex function
g(λx + (1− λ)y) ≤ λg(x) + (1− λ)g(y)− µ

2 λ(1− λ)[λρ + (1− λ)ρ]∥x − y∥ρ
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Main result 2: Faster convergence under error bound

Theorem
Suppose that the error bound condition holds.
(i) The number of iterations Tε to attain δt ≤ ε is bounded by

Tε ≤ O(1)

(
ρ1+ν(L

(ν)
f )ρ

µ1+νερ−1−ν

) 1
νρ

∆0

ε
,

where ∆0 = φ(x0)− φ∗.
(ii) When we further assume f is convex,

Tε ≤


O(1)

L
(1)
f

µ
log

∆0

ε
(ρ = ν + 1 = 2) : linear convergence,

O(1)

(
ρ1+ν(L

(ν)
f )ρ

µ1+νερ−1−ν

) 1
νρ

(otherwise).
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Summary

Proposed step size rule does not rely on parameters in the problem.

The iteration complexity bound is the same as the one for the exact line
search.

Further interests

Improvements of oracle complexity

Analysis under more general setting than Hölder condition

f (y) ≤ f (x)+⟨∇f (x), y − x⟩+L(ε)

2
∥y−x∥2+ε, L(ε) =

(
1 + ν

1− ν

1

2ε

) 1−ν
1+ν

(L
(ν)
f )

2
1+ν

Thank you for your attention!
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Numerical example

min f (x) = 1
p∥Ax − b∥pp

s.t. ∥x∥q ≤ 1.

p > 1 and q > 1.

A ∈ Rn×n is symmetric, n = 1000, λmin(A) = 1, λmax(A) = 100.

b = Ax̄ with ∥x̄∥q = 10.

Initial point x0 = 0; Termination criterion: δt ≤ 10−5δ0
Compared three step size rules:

1 Proposed method with the Euclidean norm ∥ · ∥2.

2 ZF20: τt = min

{
1,

(
δt

L
(ν)
f

∥xt−vt∥1+ν

)1/ν
}

[Zhao & Freund 2020] with the

Euclidean norm ∥ · ∥2, ν = p − 1,

L
(ν)
f = 22−pn

(p−1)(2−p)
2p λmax(A)

p when p ∈ (1, 2].

L
(ν)
f is unclear for p > 2.

3 τt = 2/(t + 2).

Implemented by Matlab on an Apple desktop with the 3.0GHz Intel Xeon
E5-1680v2 processor and 64GB of RAM.
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Numerical example

Average of CPU time (sec) Average of number of iterations
q p Proposed alg ZF20 2

t+2 Proposed alg ZF20 2
t+2

1.5 1.3 0.016 0.55 0.21 24.0 1129.3 437.9
1.6 0.0044 0.004 0.2 5.2 7.1 442.0
2.0 0.0033 0.0029 0.18 6.0 4.9 407.2
3.0 0.0086 NA 0.15 11.3 NA 363.8

2.0 1.3 0.038 0.29 0.2 64.4 677.5 452.3
1.6 0.0053 0.0032 0.18 6.2 5.1 422.6
2.0 0.0023 0.002 0.16 4.0 4.0 411.1
3.0 0.0028 NA 0.15 5.2 NA 378.9

3.0 1.3 0.25 2.0 0.37 413.4 4419.7 776.9
1.6 0.01 0.017 0.21 12.9 33.7 418.8
2.0 0.0041 0.0031 0.18 6.7 6.3 408.2
3.0 0.0061 NA 0.16 6.3 NA 381.2

Table: Numerical results (average over 10 instances). RED indicates the best.
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Upper bound of the total number of line search iterations

As long as min0≤i≤t δi ≥ ε, the total number of inner iterations in the line search
until t-th outer iteration is bounded by

2t + 2 +

[
log2

2L(ε)

L−1

]
+

,

where [α]+ = max(0, α) and

L(ε) =



max

{(
1−ν
1+ν

1
ε

) 1−ν
1+ν

(L
(ν)
f )

2
1+ν ,

(
2(1−ν)
1+ν

) 1−ν
2ν

(L
(ν)
f )

1
ν

(
Ddom g

ε

) 1−ν
ν

}
if dom g is bounded,

max

{(
1−ν
1+ν

1
ε

) 1−ν
1+ν

(L
(ν)
f )

2
1+ν ,

(
2(1−ν)
1+ν

) 1−ν
2ν

(L
(ν)
f )

1
ν

(
ρ

κερ−1

) 1−ν
ρν

}
if error bound condition holds.
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