Adaptive Step-Size Rule for Conditional Gradient Methods Minimizing Weakly Smooth Objective Functions

*Masaru Ito (Nihon University, Japan)

Joint work with Zhaosong Lu and Chuan He (University of Minnesota)

SIAM Conference on Optimizaiton July 22, 2021

Problem setting

Composite optimization

$$\varphi^* := \min_{\mathbf{x} \in \mathbb{R}^n} \varphi(\mathbf{x}), \quad \varphi(\mathbf{x}) := \mathbf{f}(\mathbf{x}) + \mathbf{g}(\mathbf{x}),$$

 $f: \mathbb{R}^n \to \mathbb{R}$ is a C^1 function and $g: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ is an lsc convex function.

- Example: g is the indicator function of a compact convex set
- *f* is possibly non-convex.
- Assumption 1: dom g is bounded $(\text{dom } g = \{x : g(x) < +\infty\})$
- Assumption 2: f is weakly smooth, i.e., ∇f is Hölder continuous: $\exists \nu \in (0,1], \ \exists L_f^{(\nu)} > 0 \ \text{such that}$

$$\|\nabla f(x) - \nabla f(y)\|_* \le L_f^{(\nu)} \|x - y\|^{\nu}, \quad \forall x, y \in \operatorname{dom} g,$$

where $\|\cdot\|_*$ is the dual of $\|\cdot\|.$

Approximate solutions

For the problem $\varphi^* = \min_x [\varphi(x) = f(x) + g(x)]$, we define the quantity

$$\delta(\mathbf{x}) := \max_{\mathbf{v}} \{ \langle \nabla f(\mathbf{x}), \mathbf{x} - \mathbf{v} \rangle + g(\mathbf{x}) - g(\mathbf{v}) \} \ge 0.$$

It is often called the 'Frank-Wolfe gap' at x.

- (1) $\delta(x) = 0$ if and only if $0 \in \nabla f(x) + \partial g(x)$.
- (2) $\varphi(x) \varphi^* \le \delta(x)$ if f is convex.
 - Assumption 3: For any fixed x, we can solve the following convex optimization (i.e., $\delta(x)$ is computable)

$$\min_{\mathbf{v}\in\mathbb{R}^n}\{\langle\nabla f(\mathbf{x}),\mathbf{v}\rangle+g(\mathbf{v})\}$$

Example: When $g = \operatorname{ind}_C$ for a compact convex set C, the above problem is $\min\{\langle \nabla f(x), v \rangle : v \in C\}$

Conditional gradient method

Frank-Wolfe method [Frank-Wolfe '56] with regularization [Bach '15]

```
x_0 \in \text{dom } g
For t = 0, 1, 2, ...:
(1) v_t \in \text{Argmin}_{x \in \mathbb{R}^n} \{ \langle \nabla f(x_t), v_t \rangle \}
```

- (1) $v_t \in \operatorname{Argmin}_{v \in \mathbb{R}^n} \{ \langle \nabla f(\mathbf{x}_t), \mathbf{v} \rangle + g(\mathbf{v}) \}$ (Convex optimization)
- (2) Terminate if $\delta_t := \delta(\mathbf{x}_t)$ is sufficiently small
- (3) $x_{t+1} := x_t + \tau_t(v_t x_t)$ ($\in \text{dom } g$), for some step size $\tau_t \in [0, 1]$.

Conditional gradient method

Frank-Wolfe method [Frank-Wolfe '56] with regularization [Bach '15]

```
x_0 \in \text{dom } g
For t = 0, 1, 2, \ldots:
```

- (1) $v_t \in Argmin_{v \in \mathbb{R}^n} \{ \langle \nabla f(\mathbf{x}_t), v \rangle + g(v) \}$ (Convex optimization)
- (2) Terminate if $\delta_t := \delta(\mathbf{x}_t)$ is sufficiently small
- (3) $x_{t+1} := x_t + \tau_t(v_t x_t) \ (\in \text{dom } g)$, for some step size $\tau_t \in [0, 1]$.
- Complexity per iteration: Gradient $\nabla f(x_t)$ and convex minimization $\min\{\langle \nabla f(x_t), v \rangle + g(v)\}$
- Computable termination criterion $\delta_t \leq \varepsilon$
- Slower convergence rate than (accelerated) proximal gradient method (O(1/t)) vs $O(1/t^2)$ for smooth convex f).

Key: Step size rule affects the rate of convergence

The basic tool is the "Descent lemma" : $f(y) \leq f(x) + \langle \nabla f(x), y - x \rangle + \frac{L_f^{(\nu)}}{1+\nu} \|y - x\|^{1+\nu}.$

(1) Exact line search $\tau_t \in \operatorname{Argmin}_{\tau \in [0,1]} \varphi(x_t + \tau(v_t - x_t))$. Convergence results follows for many cases.

The basic tool is the "Descent lemma" : $f(y) \leq f(x) + \langle \nabla f(x), y - x \rangle + \frac{L_f^{(\nu)}}{1+\nu} \|y - x\|^{1+\nu}.$

- (1) Exact line search $\tau_t \in \operatorname{Argmin}_{\tau \in [0,1]} \varphi(x_t + \tau(v_t x_t))$. Convergence results follows for many cases.
- (2) $\tau_t = \min\left\{1, \frac{\delta_t}{L_f^{(1)} \|x_t v_t\|^2}\right\}$ [Frank & Wolfe '56] for the case $\nu = 1$ When f is smooth, same convergence guarantee as (1) follows.

The basic tool is the "Descent lemma" : $f(y) \leq f(x) + \langle \nabla f(x), y - x \rangle + \frac{L_f^{(\nu)}}{1+\nu} \|y - x\|^{1+\nu}.$

- (1) Exact line search $\tau_t \in \operatorname{Argmin}_{\tau \in [0,1]} \varphi(x_t + \tau(v_t x_t))$. Convergence results follows for many cases.
- (2) $\tau_t = \min\left\{1, \frac{\delta_t}{L_f^{(1)} \|x_t v_t\|^2}\right\}$ [Frank & Wolfe '56] for the case $\nu = 1$ When f is smooth, same convergence guarantee as (1) follows.
- (3) $\tau_t=2/(t+2)$ [Clarkson 2008], [Hazan 2008], [Nesterov 2018] Convergence results follows when f is convex. Advantage: It is parameter free.

The basic tool is the "Descent lemma" :
$$f(y) \leq f(x) + \langle \nabla f(x), y - x \rangle + \frac{L_f^{(\nu)}}{1+\nu} \|y - x\|^{1+\nu}.$$

- (1) Exact line search $\tau_t \in \operatorname{Argmin}_{\tau \in [0,1]} \varphi(x_t + \tau(v_t x_t))$. Convergence results follows for many cases.
- (2) $\tau_t = \min \left\{ 1, \frac{\delta_t}{\int_{0}^{(1)} ||x_t y_t||^2} \right\}$ [Frank & Wolfe '56] for the case $\nu = 1$
- When f is smooth, same convergence guarantee as (1) follows. (3) $\tau_t = 2/(t+2)$ [Clarkson 2008], [Hazan 2008], [Nesterov 2018]

Convergence results follows when f is convex.

Advantage: It is parameter free.

$$(4) \ \ \tau_t = \min \left\{ 1, \left(\frac{\delta_t}{L_f^{(\nu)} \|x_t - v_t\|^{1+\nu}} \right)^{1/\nu} \right\} \ [\text{Zhao \& Freund, 2020}]$$

Same convergence guarantee as (1) follows.

It is parameter dependent.

Proposed method: Adaptive step size rule

$$f(y) \leq f(x) + \langle \nabla f(x), y - x \rangle + \frac{L(\varepsilon)}{2} \|y - x\|^2 + \varepsilon, \quad L(\varepsilon) = \left(\frac{1 + \nu}{1 - \nu} \frac{1}{2\varepsilon}\right)^{\frac{1 - \nu}{1 + \nu}} (L_f^{(\nu)})^{\frac{2}{1 + \nu}}$$

Proposed method: Adaptive step size rule

 $x_0 \in \operatorname{dom} g, L_{-1} > 0$

For t = 0, 1, 2, ...:

- (1) $v_t \in \operatorname{Argmin}_{v \in \mathbb{R}^n} \{ \langle \nabla f(\mathbf{x}_t), v \rangle + g(v) \}$ (Convex optimization)
- (2) Terminate if $\delta_t := \delta(\mathbf{x}_t)$ is sufficiently small.
- (3) Adaptive line search to compute $\tau_t \in [0, 1]$:

(3a) Repeat
$$i = 0, 1, 2, \ldots$$
:
$$L_{t}^{(i)} := 2^{i-1}L_{t-1}$$

$$\tau_{t}^{(i)} := \min\left\{1, \frac{\delta_{t}/2}{L_{t}^{(i)}\|x_{t}-v_{t}\|^{2}}\right\}$$

$$x_{t+1}^{(i)} := x_{t} + \tau_{t}^{(i)}(v_{t} - x_{t})$$
Until $\varphi(x_{t+1}^{(i)}) \leq \varphi(x_{t}) - \tau_{t}^{(i)}\delta_{t}/2 + \frac{1}{2}L_{t}^{(i)}(\tau_{t}^{(i)})^{2}\|x_{t} - v_{t}\|^{2}$
(3b) $\tau_{t} := \tau_{t}^{(i)}, \quad L_{t} := L_{t}^{(i)}.$
(4) $x_{t+1} := x_{t} + \tau_{t}(v_{t} - x_{t}) \in \text{dom } g$

Main result: Rate of convergence of proposed method

Theorem

(i) The number of iterations T_{ε} to attain $\delta_t \leq \varepsilon$ is bounded as follows.

$$T_{\varepsilon} \leq O(1) \left(\frac{L_f^{(
u)} D_{\mathrm{dom}\,g}^{1+
u}}{arepsilon}
ight)^{rac{1}{
u}} rac{\Delta_0}{arepsilon},$$

where $\Delta_0 = \varphi(x_0) - \varphi^*$, $D_{\text{dom } g} = \text{diam}(\text{dom } g)$, and O(1) is an absolute constant.

(ii) When we further assume f is convex,

$$T_{\varepsilon} \leq O(1) \left(\frac{L_f^{(\nu)} D_{\mathrm{dom}\,g}^{1+\nu}}{\varepsilon} \right)^{\frac{1}{\nu}}.$$

- We can prove the same result for the exact line search (1) or the step size rule (4) of [Zhao-Freund 2020].
- Advantage of proposed method: It is parameter free.

Faster convergence under error bound

- Some conditions for linear convergence:
 - (1) f is smooth convex, $g = \text{ind}_C$ for a strongly convex set C which does not contain stationary points of f [Levitin & Polyak, 1966]

$$\lambda x + (1 - \lambda)y + \frac{\mu}{2}\lambda(1 - \lambda)\|x - y\|^2 u \in C,$$

 $\forall x, y \in C, \lambda \in [0, 1], u \in B(0, 1)$

- (2) f is smooth convex, g is a strongly convex function [Ghadimi, 2019] $g(\lambda x + (1-\lambda)y) \le \lambda g(x) + (1-\lambda)g(y) \frac{\mu}{2}\lambda(1-\lambda)\|x-y\|^2$
- ullet Existing step size rules are parameter dependent or analyzed for u=1.
- We introduce an error bound condition and observe the convergence rate of our proposed method.

Error bound of subproblems

Assume that there exists $\mu>0$ and $\rho\geq 2$ such that any solution $v^*\in \operatorname{Argmin}_v[\langle \nabla f(x),v\rangle+g(v)]$ satisfies

$$[\langle \nabla f(x), v \rangle + g(v)] - [\langle \nabla f(x), v^* \rangle + g(v^*)] \ge \frac{\mu}{\rho} ||v - v^*||^{\rho}, \quad \forall v \in \text{dom } g.$$

Error bound of subproblems

Assume that there exists $\mu>0$ and $\rho\geq 2$ such that any solution $v^*\in \operatorname{Argmin}_v[\langle \nabla f(x),v\rangle+g(v)]$ satisfies

$$[\langle \nabla f(x), v \rangle + g(v)] - [\langle \nabla f(x), v^* \rangle + g(v^*)] \ge \frac{\mu}{\rho} ||v - v^*||^{\rho}, \quad \forall v \in \text{dom } g.$$

Examples:

(1) $g = \text{ind}_C$ for a uniformly convex set C which does not contain stationary points of f

$$\lambda x + (1 - \lambda)y + \frac{c}{2}\lambda(1 - \lambda)\|x - y\|^{\rho}u \in C,$$

 $\forall x, y \in C, \ \lambda \in [0, 1], \ u \in B(0, 1)$

(2) g is a uniformly convex function

$$g(\lambda x + (1 - \lambda)y) \le \lambda g(x) + (1 - \lambda)g(y) - \frac{\mu}{2}\lambda(1 - \lambda)[\lambda^{\rho} + (1 - \lambda)^{\rho}]\|x - y\|^{\rho}$$

Main result 2: Faster convergence under error bound

Theorem

Suppose that the error bound condition holds.

(i) The number of iterations $T_{arepsilon}$ to attain $\delta_t \leq arepsilon$ is bounded by

$$T_{\varepsilon} \leq O(1) \left(\frac{\rho^{1+\nu} (L_f^{(\nu)})^{\rho}}{\mu^{1+\nu} \varepsilon^{\rho-1-\nu}} \right)^{\frac{1}{\nu\rho}} \frac{\Delta_0}{\varepsilon},$$

where $\Delta_0 = \varphi(x_0) - \varphi^*$.

(ii) When we further assume f is convex,

$$T_{arepsilon} \leq \left\{ egin{array}{ll} O(1) rac{\mathcal{L}_f^{(1)}}{\mu} \log rac{\Delta_0}{arepsilon} & (
ho =
u + 1 = 2) : ext{linear convergence}, \ O(1) \left(rac{
ho^{1+
u} (\mathcal{L}_f^{(
u)})
ho}{\mu^{1+
u} arepsilon^{\rho-1-
u}}
ight)^{rac{1}{
u
ho}} & ext{(otherwise)}. \end{array}
ight.$$

Summary

- Proposed step size rule does not rely on parameters in the problem.
- The iteration complexity bound is the same as the one for the exact line search.

Further interests

- Improvements of oracle complexity
- Analysis under more general setting than Hölder condition

$$f(y) \leq f(x) + \langle \nabla f(x), y - x \rangle + \frac{L(\varepsilon)}{2} \|y - x\|^2 + \varepsilon, \quad L(\varepsilon) = \left(\frac{1 + \nu}{1 - \nu} \frac{1}{2\varepsilon}\right)^{\frac{1 - \nu}{1 + \nu}} (L_f^{(\nu)})^{\frac{2}{1 + \nu}}$$

Summary

- Proposed step size rule does not rely on parameters in the problem.
- The iteration complexity bound is the same as the one for the exact line search.

Further interests

- Improvements of oracle complexity
- Analysis under more general setting than Hölder condition

$$f(y) \leq f(x) + \langle \nabla f(x), y - x \rangle + \frac{L(\varepsilon)}{2} \|y - x\|^2 + \varepsilon, \quad L(\varepsilon) = \left(\frac{1 + \nu}{1 - \nu} \frac{1}{2\varepsilon}\right)^{\frac{1 - \nu}{1 + \nu}} (L_f^{(\nu)})^{\frac{2}{1 + \nu}}$$

Thank you for your attention!

References I

- Jonathan M. Borwein, Guoyin Li, and Liangjin Yao, Analysis of the convergence rate for the cyclic projection algorithm applied to basic semi-algebraic convex sets, SIAM J. Optim., **24**(1):498–527, 2014.
- J. C. Dunn, Rates of convergence for conditional gradient algorithms near singular and nonsingular extremals, SIAM J. Control Optim., **17**:187–211, 1979.
- Marguerite Frank Philip Wolfe, An algorithm for quadratic programming, Naval Research Logistics Quarterly, 3:95–110, 1956.
- Robert M. Freund and Paul Grigas, New analysis and results for the Frank-Wolfe method, Math. Program., **155**:199–230, 2016.
- Dan Garber and Elad Hazan, Faster Rates for the Frank-Wolfe Method over Strongly-Convex Sets, Proceedings of the 32nd International Conference on Machine Learning, **37**:541–549, 2015.

References II

- Zaid Harchaoui, Anatoli Juditsky, Arkadi Nemirovski, Conditional gradient algorithms for norm-regularized smooth convex optimization, Math. Program., **152**:75–112, 2015.
- Saeed Ghadimi, Conditional gradient type methods for composite nonlinear and stochastic optimization, Math. Program., **173**:431–464, 2019.
- Cristóbal Guzmán and Arkadi Nemirovski, On lower complexity bounds for large-scale smooth convex optimization, J. Complexity **31**:1–14, 2015.
- Martin Jaggi, Revisiting Frank-Wolfe: Projection-Free Sparse Convex Optimization, Proceedings of the 30th International Conference on Machine Learning, **28**:427-435, 2013.
- Thomas Kerdreux, Alexandre d'Aspremont, and Sebastian Pokutta, Projection-free optimization on uniformly convex sets, ArXiv preprint, arXiv:2004.11053v2, 2020.
 - E. S. Levitin and B. T. Polyak, Constrained Minimization Methods, *USSR Computational Mathematics and Mathematical Physics*, **6**(5):1–50, 1966.

References III

Yu Nesterov, Universal gradient methods for convex optimization problems, Math. Program., **152**:381–404, 2015.

Yu. Nesterov, Complexity bounds for primal-dual methods minimizing the model of objective function, Math. Program., **171**:311–330, 2018.

Y. Nesterov and B.T. Polyak, Cubic regularization of Newton method and its global performance, Math. Program., **108**:177–205, 2006.

C. Zălinescu, Convex analysis in general vector spaces, World Scientific, Singapore, 2002.

Renbo Zhao and Robert M. Freund, Analysis of the Frank-Wolfe method for logarithmically-homogeneous barriers, with an extension, ArXiv preprint, arXiv:2010.08999v1, 2020.

Numerical example

min
$$f(x) = \frac{1}{p} ||Ax - b||_p^p$$

s.t. $||x||_q \le 1$.

- p > 1 and q > 1.
- $A \in \mathbb{R}^{n \times n}$ is symmetric, n = 1000, $\lambda_{\min}(A) = 1$, $\lambda_{\max}(A) = 100$.
- $b = A\bar{x}$ with $||\bar{x}||_q = 10$.
- Initial point $x_0 = 0$; Termination criterion: $\delta_t \leq 10^{-5} \delta_0$
- Compared three step size rules:
 - **①** Proposed method with the Euclidean norm $\|\cdot\|_2$.
 - $\text{ZF20: } \tau_t = \min \left\{ 1, \left(\frac{\delta_t}{L_f^{(\nu)} \| \mathbf{x}_t \mathbf{v}_t \|^{1+\nu}} \right)^{1/\nu} \right\} \text{ [Zhao \& Freund 2020] with the } \\ \text{Euclidean norm } \| \cdot \|_2, \ \nu = p-1, \\ L_f^{(\nu)} = 2^{2-p} n^{\frac{(p-1)(2-p)}{2p}} \lambda_{\max}(A)^p \text{ when } p \in (1,2]. \\ L_f^{(\nu)} \text{ is unclear for } p > 2.$
- Implemented by Matlab on an Apple desktop with the 3.0GHz Intel Xeon E5-1680v2 processor and 64GB of RAM.

Numerical example

		Average of CPU time (sec)			Average of number of iterations		
q	p	Proposed alg	ZF20	$\frac{2}{t+2}$	Proposed alg	ZF20	$\frac{2}{t+2}$
1.5	1.3	0.016	0.55	0.21	24.0	1129.3	437.9
	1.6	0.0044	0.004	0.2	5.2	7.1	442.0
	2.0	0.0033	0.0029	0.18	6.0	4.9	407.2
	3.0	0.0086	NA	0.15	11.3	NA	363.8
2.0	1.3	0.038	0.29	0.2	64.4	677.5	452.3
	1.6	0.0053	0.0032	0.18	6.2	5.1	422.6
	2.0	0.0023	0.002	0.16	4.0	4.0	411.1
	3.0	0.0028	NA	0.15	5.2	NA	378.9
3.0	1.3	0.25	2.0	0.37	413.4	4419.7	776.9
	1.6	0.01	0.017	0.21	12.9	33.7	418.8
	2.0	0.0041	0.0031	0.18	6.7	6.3	408.2
	3.0	0.0061	NA	0.16	6.3	NA	381.2

Table: Numerical results (average over 10 instances). RED indicates the best.

Upper bound of the total number of line search iterations

As long as $\min_{0 \le i \le t} \delta_i \ge \varepsilon$, the total number of inner iterations in the line search until t-th outer iteration is bounded by

$$2t + 2 + \left[\log_2 \frac{2\overline{L}(\varepsilon)}{L_{-1}}\right]_+,$$

where $[\alpha]_+ = \max(0, \alpha)$ and

$$\overline{L}(\varepsilon) = \left\{ \begin{array}{l} \max \left\{ \left(\frac{1-\nu}{1+\nu} \frac{1}{\varepsilon}\right)^{\frac{1-\nu}{1+\nu}} \left(L_f^{(\nu)}\right)^{\frac{2}{1+\nu}}, \quad \left(\frac{2(1-\nu)}{1+\nu}\right)^{\frac{1-\nu}{2\nu}} \left(L_f^{(\nu)}\right)^{\frac{1}{\nu}} \left(\frac{D_{\mathrm{dom}\,g}}{\varepsilon}\right)^{\frac{1-\nu}{\nu}} \right\} \\ \text{if dom g is bounded}, \\ \max \left\{ \left(\frac{1-\nu}{1+\nu} \frac{1}{\varepsilon}\right)^{\frac{1-\nu}{1+\nu}} \left(L_f^{(\nu)}\right)^{\frac{2}{1+\nu}}, \quad \left(\frac{2(1-\nu)}{1+\nu}\right)^{\frac{1-\nu}{2\nu}} \left(L_f^{(\nu)}\right)^{\frac{1}{\nu}} \left(\frac{\rho}{\kappa\varepsilon^{\rho-1}}\right)^{\frac{1-\nu}{\rho\nu}} \right\} \\ \text{if error bound condition holds}. \end{array} \right.$$