Nearly optimal first-order method under Hölderian error bound: An adaptive proximal point approach

*Masaru Ito (Nihon University) Mituhiro Fukuda (Tokyo Institute of Technology)

> ICCOPT2019 August 6, 2019

- **()** Iteration complexity under the norm of the gradient mapping $||g_L(x)||$
- ② Adaptive and nearly optimal first-order method for L-smooth functions
- **O Hölderian error bound (HEB) condition**
- Adaptive and nearly optimal first-order method under HEB

Composite convex optimization problem

minimize F(x) := f(x) + g(x) subject to $x \in \mathbb{R}^n$

• $f : \mathbb{R}^n \to \mathbb{R}$ is a *L*-smooth convex function:

$$\|\nabla f(x) - \nabla f(y)\| \le L \|x - y\|, \quad \forall x, y$$

- $g : \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ is a proper lower-semicontinuous convex function.
- F^* : the optimal value, X^* : the optimal solution set
- Proximal first-order method: An iterative method generates approximate solutions {x_k} using ∇f(x) and prox_g(x).
- g(x) plays a role of a regularization term
 → Application to large-scale problems: data mining, machine learning, etc.

Iteration complexity

Iteration Complexity = "Number of iterations to attain opt. measure ≤ ε" Choice of optimality measure: F(x) − F*, dist(x, X*), etc.

Iteration complexity

- Iteration Complexity = "Number of iterations to attain opt. measure ≤ ε"
 Choice of optimality measure: F(x) − F*, dist(x, X*), etc.
- Optimal iteration complexity is known for the measure $F(x) F^*$:

A family of accelerated gradient methods ensure the iteration complexity $\mathcal{O}\left(\sqrt{\frac{L\operatorname{dist}(x_0, X^*)^2}{\varepsilon}}\right)$ which is essentially unimprovable.

Iteration complexity

- Iteration Complexity = "Number of iterations to attain opt. measure ≤ ε" Choice of optimality measure: F(x) − F*, dist(x, X*), etc.
- Optimal iteration complexity is known for the measure $F(x) F^*$:

A family of accelerated gradient methods ensure the iteration complexity $\mathcal{O}\left(\sqrt{\frac{L\operatorname{dist}(x_0, X^*)^2}{\varepsilon}}\right)$ which is essentially unimprovable.

• This work employs the measure: $||g_L(x)||$ (= $||\nabla f(x)||$ if $g \equiv 0$)

Gradient mapping
$$g_L(x) := L\left(x - \operatorname{prox}_{g/L}\left(x - \frac{1}{L}\nabla f(x)\right)\right)$$
,

$$\operatorname{prox}_{g/L}(y) := \operatorname*{argmin}_{x} \left(g(x) + \frac{L}{2} \|x - y\|^2 \right).$$

 $g_L(x) = 0$ iff $x \in X^*$.

 $||g_L(x)||$ is available as a computable optimality measure.

• A lower bound of the iteration complexity under the gradient norm is

$$\Omega\left(\sqrt{\frac{L\operatorname{dist}(x_0,X^*)}{\varepsilon}}\right)$$

for minimization $\min_x f(x)$ of L-smooth functions (Nemirovsky 1991).

• A lower bound of the iteration complexity under the gradient norm is

$$\Omega\left(\sqrt{rac{L\operatorname{\mathsf{dist}}(x_0,X^*)}{arepsilon}}
ight)$$

for minimization $\min_x f(x)$ of *L*-smooth functions (Nemirovsky 1991).

• Accelerated gradient methods can attain the iteration complexity

$$\mathcal{O}\left(\frac{\sqrt{L\operatorname{dist}(x_0, X^*)}}{\varepsilon^{2/3}}\right)$$
 (with a small modification).

• A lower bound of the iteration complexity under the gradient norm is

$$\Omega\left(\sqrt{\frac{L\operatorname{\mathsf{dist}}(x_0,X^*)}{\varepsilon}}\right)$$

for minimization $\min_x f(x)$ of *L*-smooth functions (Nemirovsky 1991).

- Accelerated gradient methods can attain the iteration complexity $\mathcal{O}\left(\frac{\sqrt{L\operatorname{dist}(x_0, X^*)}}{\varepsilon^{2/3}}\right) \text{ (with a small modification).}$
- A regularization technique (Nesterov 2012) attains near optimality

$$\mathcal{O}\left(\sqrt{\frac{L\operatorname{dist}(x_0,X^*)}{\varepsilon}}\log{\frac{1}{\varepsilon}}
ight)$$

However, we require $dist(x_0, X^*)$ to be known in advance.

• A lower bound of the iteration complexity under the gradient norm is

$$\Omega\left(\sqrt{rac{L\operatorname{\mathsf{dist}}(x_0,X^*)}{arepsilon}}
ight)$$

for minimization $\min_x f(x)$ of *L*-smooth functions (Nemirovsky 1991).

- Accelerated gradient methods can attain the iteration complexity $\mathcal{O}\left(\frac{\sqrt{L\operatorname{dist}(x_0, X^*)}}{\varepsilon^{2/3}}\right) \text{ (with a small modification).}$
- A regularization technique (Nesterov 2012) attains near optimality

$$\mathcal{O}\left(\sqrt{\frac{L\operatorname{dist}(x_0, X^*)}{\varepsilon}}\log \frac{1}{\varepsilon}\right)$$

However, we require dist (x_0, X^*) to be known in advance. \rightarrow This requirement is reducible (This talk).

Regularization technique (Nesterov 2012)

Regularized problem:

$$\mathsf{minimize}_x \quad F_{\sigma,x_0}(x) := F(x) + \frac{\sigma}{2} \|x - x_0\|^2, \qquad \sigma := \frac{\varepsilon}{2\operatorname{dist}(x_0, X^*)},$$

Optimal solution is $\operatorname{prox}_{F/\sigma}(x_0)$.

 F_{σ,x_0} is σ -strongly convex for which we can apply accelerated gradient method:

 $F_{\sigma,x_0}(x_k) - \inf F_{\sigma,x_0} \leq \mathcal{O}(1)L \|x_0 - \operatorname{prox}_{F/\sigma}(x_0)\|^2 \exp(-k\sqrt{\sigma/L})$

Regularization scheme

Compute $\bar{x} \ (\approx \operatorname{prox}_{F/\sigma}(x_0))$ via accelerated gradient method applied to F_{σ,x_0} and running $\mathcal{O}(1)\sqrt{L/\sigma} \log((L+\sigma)/\sigma)$ iterations.

We can show that

$$\|g_L(\bar{x})\| \leq 2\sigma \operatorname{dist}(x_0, X^*) = \varepsilon.$$

Iteration complexity is

$$\mathcal{O}\left(\sqrt{rac{L\operatorname{\mathsf{dist}}(\mathsf{x}_0,X^*)}{arepsilon}}\lograc{1}{arepsilon}
ight)$$
 : nearly optimal

Adaptive regularization technique

Regularized problem:

minimize_x
$$F_{\sigma,x_0}(x) := F(x) + \frac{\sigma}{2} ||x - x_0||^2$$
, $\sigma > 0$. $\sigma := \frac{\varepsilon}{2 \operatorname{dist}(x_0, X^*)}$

Algorithm I: Adaptive regularization scheme

(a) Compute x̄ (≈ prox_{F/σ}(x₀)) via accelerated gradient method applied to F_{σ,x₀} and running O(1)√L/σ log(L + σ)/σ iterations.
(b) If ||g_L(x̄)|| > ε then σ > ε/(2 dist(x₀, X*)) so restart (a) letting σ ← σ/2. Otherwise, we obtain an ε-solution.

We can show that

$$\|g_L(\bar{x})\| \leq 2\sigma \operatorname{dist}(x_0, X^*).$$

Main result I: Adaptive regularization with $\sigma := L$ ensures the iteration complexity

$$\mathcal{O}\left(\sqrt{rac{L\operatorname{dist}(x_0, X^*)}{arepsilon}}\lograc{1}{arepsilon}
ight):$$
 nearly optimal

We do not require to know $dist(x_0, X^*)$.

For the initial point $x_0 \in \mathbb{R}^n$, there exists $\kappa > 0$, $\rho \ge 1$ such that

 $F(x) - F^* \ge \kappa \operatorname{dist}(x, X^*)^{\rho}, \quad \forall x \text{ with } F(x) \le F(x_0).$

For the initial point $x_0 \in \mathbb{R}^n$, there exists $\kappa > 0$, $\rho \ge 1$ such that

 $F(x) - F^* \ge \kappa \operatorname{dist}(x, X^*)^{\rho}, \quad \forall x \text{ with } F(x) \le F(x_0).$

• Strong convexity implies HEB:

F is μ -strongly convex $\iff F(x) \ge F(y) + F'(y; x - y) + \frac{\mu}{2} ||x - y||^2, \forall x, y$

$$\implies F(x) - F^* \ge \frac{\mu}{2} \operatorname{dist}(x, X^*)^2, \ \forall x$$
$$\implies \mathsf{HEB} \text{ with } \kappa = \frac{\mu}{2}, \ \rho = 2$$

For the initial point $x_0 \in \mathbb{R}^n$, there exists $\kappa > 0$, $\rho \ge 1$ such that

 $F(x) - F^* \ge \kappa \operatorname{dist}(x, X^*)^{\rho}, \quad \forall x \text{ with } F(x) \le F(x_0).$

• Strong convexity implies HEB:

F is μ -strongly convex $\iff F(x) \ge F(y) + F'(y; x - y) + \frac{\mu}{2} ||x - y||^2, \forall x, y$

- $\implies F(x) F^* \ge \frac{\mu}{2} \operatorname{dist}(x, X^*)^2, \ \forall x$ $\implies \text{HEB with } \kappa = \frac{\mu}{2}, \ \rho = 2$
- If F is a continuous convex, coercive, and semi-algebraic function, then, for any x₀ ∈ ℝⁿ, there exists κ, ρ such that HEB holds.

 $\begin{array}{l} F \text{ is semi-algebraic } \Longleftrightarrow \\ \text{graph}\left(F\right) = \bigcup_{i}^{\text{finite}} \bigcap_{j}^{\text{finite}} \{x : p_{ij}(x) \leq 0\}, \quad p_{ij}: \text{ a polynomial} \end{array}$

For the initial point $x_0 \in \mathbb{R}^n$, there exists $\kappa > 0$, $ho \geq 1$ such that

 $F(x) - F^* \ge \kappa \operatorname{dist}(x, X^*)^{\rho}, \quad \forall x \text{ with } F(x) \le F(x_0).$

Relation to Kurdyka-Łojasiewicz inequality (Bolte et al. 2017)

- Let f be a proper lower-semicontinuous convex function on X.
- Fix x_0 and $\rho \ge 1$.

Then, HEB holds for some $\kappa > 0$ if and only if there exists c > 0 such that

$${
m dist}(0,\partial f(x))\geq c(f(x)-f^*)^lpha,\quad lpha=1-rac{1}{
ho}\in [0,1)$$

for all x with $f(x) \leq f(x_0)$.

	Problem class	Adaptive to	Measure
Nesterov '07	μ -strong conv.	μ	$\ g_L(x)\ $
Lin & Xiao '15			
Fercoq & Qu '17	HEB with $\rho = 2$	κ	$\ g_L(x)\ $
Liu & Yang '17	HEB with known $ ho$	κ	$\ g_L(x)\ $
This work	HEB	κ, ρ	$\ g_L(x)\ $
Roulet & d'Aspremont '17	HEB	κ, ρ	$F(x) - F^*$
Renegar & Grimmer '18			

Adaptive proximal-point strategy

Assumption: f is L-smooth (L is known) and admits HEB for some κ , ρ .

Algorithm II

 $x_0 \in \mathbb{R}^n$, $\sigma > 0$ (regularization parameter). Set $x_0^+ := \operatorname{prox}_{\sigma/L} (x_0 - \nabla f(x_0)/L)$ *t*-th stage (t = 0, 1, 2, ...,): (a) Compute $x_t^{(0)}, x_t^{(1)}, \dots$ ($\approx \text{prox}_{F/\sigma}(x_t^+)$) via accelerated gradient method applied to F_{σ,x_t^+} , starting from x_t^+ , running K_t iterations, where $K_t := \mathcal{O}(1)\sqrt{L/\sigma}\log((L+\sigma)/\sigma), \quad F_{\sigma,x^+}(x) := F(x) + \frac{\sigma}{2}\|x - x_t^+\|^2$ (*) If $||g_l(x_t^{(k)})|| \le ||g_l(x_t)||/2$ holds at some k, then set $x_{t+1} := x_t^{(k)}$, $x_{t+1}^+ := \operatorname{prox}_{\sigma/L} (x_{t+1} - \nabla f(x_{t+1})/L)$ and go to (t+1)-th stage. (b) Set $\sigma \leftarrow \sigma/2$ and retry *t*-th stage.

Iteration complexity of the proposed method

Proposed method:

 $x_{t+1} \leftarrow \text{Accelerated Gradient Method}(F_{\sigma,x_t^+}, x_t^+, K_t) \approx \text{prox}_{F/\sigma}(x_t^+)$

$$x_{t+1}^+ := \operatorname{prox}_{g/L} (x_{t+1} - \nabla f(x_{t+1})/L)$$

If $||g_L(x_{t+1})|| \le ||g_L(x_t)||/2$ then, go to (t+1)-th stage.

Otherwise, set $\sigma \leftarrow \sigma/2$ and retry *t*-th stage.

Iteration complexity of the proposed method

Proposed method:

 $x_{t+1} \leftarrow \text{Accelerated Gradient Method}(F_{\sigma,x_t^+}, x_t^+, K_t) \approx \text{prox}_{F/\sigma}(x_t^+)$

$$x_{t+1}^+ := \operatorname{prox}_{g/L} (x_{t+1} - \nabla f(x_{t+1})/L)$$

If
$$\|g_L(\mathsf{x}_{t+1})\| \leq \|g_L(\mathsf{x}_t)\|/2$$
 then, go to $(t+1)$ -th stage.

Otherwise, set $\sigma \leftarrow \sigma/2$ and retry *t*-th stage.

Main result II

Iteration complexity of the proposed method when σ is initialized by $\sigma := L$:

Near optimality

Lemma

If F admits HEB for some $x_0 \in \mathbb{R}^n$, $\rho > 1$, $\kappa > 0$, then

$$F(x^+) - F^* \leq 2^{\frac{\rho}{\rho-1}} \left(\frac{1}{\kappa}\right)^{\frac{1}{\rho-1}} \|g_L(x)\|^{\frac{\rho}{\rho-1}}, \quad \forall x \text{ with } F(x) \leq F(x_0).$$

where $x^+ := \operatorname{prox}_{g/L}(x - \nabla f(x)/L)$.

- A lower complexity bound for $F(x) F^*$ induces the one for $||g_L(x)||$.
- Lower iteration complexity bound for $F(x) F^*$ is known in the case $g \equiv 0$ (In this case ρ must be ≥ 2) [Nemirovsky & Nesterov 1985].

Case	ho = 1	1 < ho < 2	$\rho = 2$	ho > 2
Convergence of $ g_L(x_t) $			linear	sublinear
Complexity w.r.t. ε	const	$\mathcal{O}(\log\lograc{1}{arepsilon})$	$\mathcal{O}(\log rac{1}{arepsilon})$	$\mathcal{O}(arepsilon^{-rac{ ho-2}{2(ho-1)}}\lograc{1}{arepsilon})$
			nearly optimal	

• Proposed method also ensures the near optimality w.r.t. $F(x) - F^*$.

- Developed a simple adaptive proximal-point strategy of first-order method under the measure ||g_L(x)||.
- For minimization *L*-smooth functions, we can achieve the iteration complesity $\mathcal{O}\left(\sqrt{\frac{L\operatorname{dist}(x_0, X^*)}{\varepsilon}}\log\frac{1}{\varepsilon}\right) \text{ without knowing } \operatorname{dist}(x_0, X^*).$
- We can adapt to the HEB condition and attain nearly optimal complexity.

Future interest

- Nonsmooth case or weakly smooth case.
- Other error bound conditions.

References

- J. Bolte, T. P. Nguyen, J. Peypouquet, and B. W. Suter, From error bounds to the complexity of first-order descent methods for convex functions, *Math. Program.*, **165**, pp. 471–507, 2017.
- O. Fercoq and Z. Qu, Adaptive restart of accelerated gradient methods under local quadratic growth condition, arXiv:1709.02300, 2017.
- Qihang Lin and Lin Xiao, An adaptive accelerated proximal gradient method and its homotopy continuation for sparse optimization, *Comput. Optim. Appl.*, **60**, pp. 633–674, 2015.
- Mingrui Liu and Tianbao Yang, Adaptive accelerated gradient converging methods under Hölderian error bound condition, arXiv:1611.07609, 2017.
- A. S. Nemirovsky, On optimality of Krylov's information when solving linear operator equations, *Journal of Complexity*, **7**, pp. 121–130, 1991.
 - A. Nemirovski and Y. Nesterov, Optimal methods of smooth convex optimization, U.S.S.R. Comput. Maths. Math. Phys., 25(2), pp. 21–30, 1985.

- Y. Nesterov, Gradient methods for minimizing composite functions, *Mathematical Programming*, **140**, pp. 125–161, 2013.
- J. Renegar and B. Grimmer, A Simple Nearly-Optimal Restart Scheme For Speeding-Up First Order Methods, arXiv:1803.00151, 2018.
- V. Roulet and A. d'Aspremont, Sharpness, Restart and acceleration, in *Advances in Neural Information Processing Systems*, pp. 1119–1129, 2017.