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Problem setting

Composite convex optimization problem

minimize F (x) := f (x) + g(x) subject to x ∈ Rn

f : Rn → R is a L-smooth convex function:

‖∇f (x)−∇f (y)‖ ≤ L‖x − y‖, ∀x , y

g : Rn → R ∪ {+∞} is a proper lower-semicontinuous convex function.

F ∗: the optimal value, X ∗: the optimal solution set

Proximal first-order method: An iterative method generates approximate
solutions {xk} using ∇f (x) and proxg (x).

g(x) plays a role of a regularization term
→ Application to large-scale problems: data mining, machine learning, etc.
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Iteration complexity

Iteration Complexity = “Number of iterations to attain opt. measure ≤ ε”

Choice of optimality measure: F (x)− F ∗, dist(x ,X ∗), etc.

Optimal iteration complexity is known for the measure F (x)− F ∗:

A family of accelerated gradient methods ensure the iteration complexity

O
(√

L dist(x0,X ∗)2

ε

)
which is essentially unimprovable.

This work employs the measure: ‖gL(x)‖ʢ= ‖∇f (x)‖ if g ≡ 0ʣ

Gradient mapping gL(x) := L

(
x − proxg/L

(
x − 1

L
∇f (x)

))
,

proxg/L(y) := argmin
x

(
g(x) +

L

2
‖x − y‖2

)
.

gL(x) = 0 iff x ∈ X ∗.

‖gL(x)‖ is available as a computable optimality measure.
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Iteration complexity under gradient mapping norm

A lower bound of the iteration complexity under the gradient norm is

Ω

(√
L dist(x0,X ∗)

ε

)

for minimization minx f (x) of L-smooth functions (Nemirovsky 1991).

Accelerated gradient methods can attain the iteration complexity

O
(√

L dist(x0,X ∗)

ε2/3

)
(with a small modification).

A regularization technique (Nesterov 2012) attains near optimality

O
(√

L dist(x0,X ∗)

ε
log

1

ε

)
.

However, we require dist(x0,X ∗) to be known in advance.
→ This requirement is reducible (This talk).
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Regularization technique (Nesterov 2012)

Regularized problem:

minimizex Fσ,x0(x) := F (x) +
σ

2
‖x − x0‖2, σ :=

ε

2 dist(x0,X ∗)
,

Optimal solution is proxF/σ(x0).
Fσ,x0 is σ-strongly convex for which we can apply accelerated gradient method:

Fσ,x0(xk)− inf Fσ,x0 ≤ O(1)L‖x0 − proxF/σ(x0)‖2 exp(−k
√
σ/L)

Regularization scheme

Compute x̄ (≈ proxF/σ(x0)) via accelerated gradient method

applied to Fσ,x0 and running O(1)
√

L/σ log((L+ σ)/σ) iterations.

We can show that
‖gL(x̄)‖ ≤ 2σ dist(x0,X

∗) = ε.

Iteration complexity is

O
(√

L dist(x0,X ∗)

ε
log

1

ε

)
: nearly optimal
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Adaptive regularization technique

Regularized problem:

minimizex Fσ,x0(x) := F (x) +
σ

2
‖x − x0‖2, σ > 0. σ :=

ε

2 dist(x0,X ∗)

Algorithm I: Adaptive regularization scheme

(a) Compute x̄ (≈ proxF/σ(x0)) via accelerated gradient method

applied to Fσ,x0 and running O(1)
√

L/σ log(L+ σ)/σ iterations.
(b) If ‖gL(x̄)‖ > ε then σ > ε/(2 dist(x0,X ∗)) so restart (a) letting σ ← σ/2.

Otherwise, we obtain an ε-solution.

We can show that
‖gL(x̄)‖ ≤ 2σ dist(x0,X

∗).

Main result I: Adaptive regularization with σ := L ensures the iteration complexity

O
(√

L dist(x0,X ∗)

ε
log

1

ε

)
: nearly optimal

We do not require to know dist(x0,X ∗).
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Hölderian error bound condition

Assumption: Hölderian Error Bound (HEB)

For the initial point x0 ∈ Rn, there exists κ > 0, ρ ≥ 1 such that

F (x)− F ∗ ≥ κ dist(x ,X ∗)ρ, ∀x with F (x) ≤ F (x0).

Strong convexity implies HEB:

F is µ-strongly convex ⇐⇒ F (x) ≥ F (y) + F ′(y ; x − y) +
µ

2
‖x − y‖2, ∀x , y

=⇒ F (x)− F ∗ ≥ µ

2
dist(x ,X ∗)2, ∀x

=⇒ HEB with κ =
µ

2
, ρ = 2

If F is a continuous convex, coercive, and semi-algebraic function, then, for
any x0 ∈ Rn, there exists κ, ρ such that HEB holds.

F is semi-algebraic ⇐⇒ graph (F ) is semi-algebraic ⇐⇒
graph (F ) =

⋃finite
i

⋂finite
j {x : pij(x) ≤ 0}, pij : a polynomial
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Hölderian error bound condition

Assumption: Hölderian Error Bound (HEB)

For the initial point x0 ∈ Rn, there exists κ > 0, ρ ≥ 1 such that

F (x)− F ∗ ≥ κ dist(x ,X ∗)ρ, ∀x with F (x) ≤ F (x0).

Relation to Kurdyka-!Lojasiewicz inequality (Bolte et al. 2017)

Let f be a proper lower-semicontinuous convex function on X .

Fix x0 and ρ ≥ 1.

Then, HEB holds for some κ > 0 if and only if there exists c > 0 such that

dist(0, ∂f (x)) ≥ c(f (x)− f ∗)α, α = 1− 1

ρ
∈ [0, 1)

for all x with f (x) ≤ f (x0).
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Adaptive algorithms

Problem class Adaptive to Measure

Nesterov ’07 µ-strong conv. µ ‖gL(x)‖
Lin&Xiao ’15
Fercoq&Qu ’17 HEB with ρ = 2 κ ‖gL(x)‖
Liu&Yang ’17 HEB with known ρ κ ‖gL(x)‖
This work HEB κ, ρ ‖gL(x)‖
Roulet& d’Aspremont ’17 HEB κ, ρ F (x)− F ∗

Renegar&Grimmer ’18
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Adaptive proximal-point strategy

Assumption: f is L-smooth (L is known) and admits HEB for some κ, ρ.

Algorithm II

x0 ∈ Rn, σ > 0 (regularization parameter). Set x+0 := proxg/L (x0 −∇f (x0)/L)

t-th stage (t = 0, 1, 2, . . . ,):

(a) Compute x (0)t , x (1)t , . . . (≈ proxF/σ(x
+
t )) via accelerated gradient method

applied to Fσ,x+
t
, starting from x+t , running Kt iterations, where

Kt := O(1)
√

L/σ log((L+ σ)/σ), Fσ,x+
t
(x) := F (x) + σ

2 ‖x − x+t ‖2

(∗) If ‖gL(x (k)t )‖ ≤ ‖gL(xt)‖/2 holds at some k ,

then set xt+1 := x (k)t , x+t+1 := proxg/L (xt+1 −∇f (xt+1)/L)

and go to (t + 1)-th stage.

(b) Set σ ← σ/2 and retry t-th stage.
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Iteration complexity of the proposed method

Proposed method:
xt+1 ← AcceleratedGradientMethod (Fσ,x+

t
, x+t , Kt) ≈ proxF/σ(x

+
t )

x+t+1 := proxg/L (xt+1 −∇f (xt+1)/L)

If ‖gL(xt+1)‖ ≤ ‖gL(xt)‖/2 then, go to (t + 1)-th stage.

Otherwise, set σ ← σ/2 and retry t-th stage.

Main result II
Iteration complexity of the proposed method when σ is initialized by σ := L:

Case ρ = 1 1 < ρ < 2 ρ = 2 ρ > 2
Convergence of ‖gL(xt)‖ finite superlinear linear sublinear

Complexity w.r.t. ε const O(log log 1
ε ) O(log 1

ε )
∗1 O(ε−

ρ−2
2(ρ−1) log 1

ε )
∗2

(∗1) = O
(√

L
κ log L

κ log 1
ε

)
, (∗2) = O

(√
L

κ
1

ρ−1 ε
ρ−2
ρ−1

log 1
ε

)
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Near optimality

Lemma
If F admits HEB for some x0 ∈ Rn, ρ > 1, κ > 0, then

F (x+)− F ∗ ≤ 2
ρ

ρ−1

(
1

κ

) 1
ρ−1

‖gL(x)‖
ρ

ρ−1 , ∀x with F (x) ≤ F (x0).

where x+ := proxg/L(x −∇f (x)/L).

A lower complexity bound for F (x)− F ∗ induces the one for ‖gL(x)‖.
Lower iteration complexity bound for F (x)− F ∗ is known in the case g ≡ 0
(In this case ρ must be ≥ 2) [Nemirovsky & Nesterov 1985].

Case ρ = 1 1 < ρ < 2 ρ = 2 ρ > 2
Convergence of ‖gL(xt)‖ finite super-linear linear sublinear

Complexity w.r.t. ε const O(log log 1
ε ) O(log 1

ε ) O(ε−
ρ−2

2(ρ−1) log 1
ε )

nearly optimal

Proposed method also ensures the near optimality w.r.t. F (x)− F ∗.
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Summary

Developed a simple adaptive proximal-point strategy of first-order method
under the measure ‖gL(x)‖.
For minimization L-smooth functions, we can achieve the iteration complesity

O
(√

L dist(x0,X∗)
ε log 1

ε

)
without knowing dist(x0,X ∗).

We can adapt to the HEB condition and attain nearly optimal complexity.

Future interest

Nonsmooth case or weakly smooth case.

Other error bound conditions.
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