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@ lteration complexity under the norm of the gradient mapping ||g.(x)||
@ Adaptive and nearly optimal first-order method for L-smooth functions
@ Holderian error bound (HEB) condition

@ Adaptive and nearly optimal first-order method under HEB
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Problem setting

Composite convex optimization problem

minimize F(x) := f(x) + g(x) subject to x € R"

@ f:R"” — R is a L-smooth convex function:

[IVE(x) = VEW) < Llix =yll, Vxy

g :R" - RU{+o0} is a proper lower-semicontinuous convex function.

F*: the optimal value, X*: the optimal solution set

@ Proximal first-order method: An iterative method generates approximate
solutions {x} using Vf(x) and prox,(x).

g(x) plays a role of a regularization term
— Application to large-scale problems: data mining, machine learning, etc.
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Iteration complexity

o Iteration Complexity = “Number of iterations to attain opt. measure < ¢&”

Choice of optimality measure: F(x) — F*, dist(x, X*), etc.
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Iteration complexity

o Iteration Complexity = “Number of iterations to attain opt. measure < ¢&”
Choice of optimality measure: F(x) — F*, dist(x, X*), etc.
e Optimal iteration complexity is known for the measure F(x) — F*:

A family of accelerated gradient methods ensure the iteration complexity
L dist(xg, X*)?
o ( ist(x0, X°)

) which is essentially unimprovable.
€
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Iteration complexity

o Iteration Complexity = “Number of iterations to attain opt. measure < ¢&”
Choice of optimality measure: F(x) — F*, dist(x, X*), etc.
e Optimal iteration complexity is known for the measure F(x) — F*:

A family of accelerated gradient methods ensure the iteration complexity
L dist(xg, X*)?
o ( ist(x0, X°)

) which is essentially unimprovable.
€

@ This work employs the measure: [|g.(x)|| (= |[Vf(x)|| if g =0)

1
Gradient mapping  gi(x) =L <X — proxg, <x - LVf(x))) ,

. L
proxga(y) = argmin () + 51— v 2.

gi(x) =0 iff x € X*.
|lgL(x)]| is available as a computable optimality measure.
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lteration complexity under gradient mapping norm

@ A lower bound of the iteration complexity under the gradient norm is

a ( Ldist(xo,X*))

for minimization min, f(x) of L-smooth functions (Nemirovsky 1991).
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lteration complexity under gradient mapping norm

@ A lower bound of the iteration complexity under the gradient norm is

a ( Ldist(xo,X*)>

for minimization min, f(x) of L-smooth functions (Nemirovsky 1991).

@ Accelerated gradient methods can attain the iteration complexity

L dist(x0, X~
o (';(/)3(0)> (with a small modification).
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lteration complexity under gradient mapping norm

@ A lower bound of the iteration complexity under the gradient norm is

a ( Ldist(xo,X*)>

for minimization min, f(x) of L-smooth functions (Nemirovsky 1991).

@ Accelerated gradient methods can attain the iteration complexity

L dist(x0, X~
o (';(/)3(0)> (with a small modification).

@ A regularization technique (Nesterov 2012) attains near optimality

0 ( L dist(xg, X*) log 1) .
5 €

However, we require dist(xg, X*) to be known in advance.
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lteration complexity under gradient mapping norm

@ A lower bound of the iteration complexity under the gradient norm is

a ( Ldist(xo,X*)>

for minimization min, f(x) of L-smooth functions (Nemirovsky 1991).
@ Accelerated gradient methods can attain the iteration complexity

o ( Ldist(xo, X*)

53 > (with a small modification).
€

@ A regularization technique (Nesterov 2012) attains near optimality
Ldist X* 1
o ( Ldist(x0, X*) |og> |
5 €

However, we require dist(xg, X*) to be known in advance.
— This requirement is reducible (This talk).
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Regularization technique (Nesterov 2012)

Regularized problem:
€

minimize,  F, (x) = F(x) + %”X — xl|?, = 2 disto, X)’

Optimal solution is proxg ;. (xo)-
Fo.x, is o-strongly convex for which we can apply accelerated gradient method:

Foxo(Xk) = inf Fo sy < O(1)L|Ix0 — proxg ,,(x0)[|> exp(—k+/a

Regularization scheme

Compute X (= proxg/,(x0)) via accelerated gradient method
applied to F, », and running O(1)/L/o log((L + c)/o) iterations.

We can show that
lgL(X)]| < 20 dist(x0, X*) = .

Iteration complexity is
Ldist(xg, X* 1 .
o ( M log ) : nearly optimal
€ €
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Adaptive regularization technique

Regularized problem:

(=

minimize, Fy(x) := F(x) + %Hx - xol?, 0>0. o:= 2 dist(x0, X°)

Algorithm |: Adaptive regularization scheme

(a) Compute X (= proxg ,(xo)) via accelerated gradient method

applied to F, x, and running O(1)+/L/o log(L + o)/o iterations.

(b) If ||lgL(X)|| > € then o > &/(2dist(xp, X*)) so restart (a) letting o < o/2.
Otherwise, we obtain an e-solution.

We can show that
llgL(%)|l < 20 dist(xo, X*).

Main result |: Adaptive regularization with o := L ensures the iteration complexity
L dist(xg, X*) 1 .
@) ———— = log— | : nearly optimal
5 €

We do not require to know dist(xp, X™*).
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Holderian error bound condition

Assumption: Holderian Error Bound (HEB)
For the initial point xp € R”, there exists K > 0, p > 1 such that

F(x) — F* > rdist(x, X*)?, Vx with F(x) < F(xp).

*M. Ito & M. Fukuda August 6, 2019 8 /13



Holderian error bound condition

Assumption: Holderian Error Bound (HEB)
For the initial point xp € R”, there exists K > 0, p > 1 such that

F(x) — F* > rdist(x, X*)?, Vx with F(x) < F(xp).

@ Strong convexity implies HEB:

F is p-strongly convex <= F(x) > F(y)+ F'(y;x—y)+ %||x—y||27 VX, y

— F(x)— F* > %dist(x7X*)2, Vx
— HEB with n:%, p=2
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Holderian error bound condition

Assumption: Holderian Error Bound (HEB)
For the initial point xp € R”, there exists K > 0, p > 1 such that

F(x) — F* > rdist(x, X*)?, Vx with F(x) < F(xp).

@ Strong convexity implies HEB:
F is p-strongly convex <= F(x) > F(y)+ F'(y;x—y)+ %Hx —yl|I?, Vx,y
— F(x)— F* > %dist(x7X*)2, Vx
— HEB with n:%, p=2

o If F is a continuous convex, coercive, and semi-algebraic function, then, for
any xp € R”, there exists «, p such that HEB holds.

F is semi-algebraic <= graph (F) is semi-algebraic <=
graph (F) = "' ﬂjf-'"'te{x :pj(x) <0}, pj: a polynomial
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Holderian error bound condition

Assumption: Holderian Error Bound (HEB)
For the initial point x; € R", there exists K > 0, p > 1 such that

F(x) — F* > rdist(x, X*)?,  Vx with F(x) < F(xp).

Relation to Kurdyka-tojasiewicz inequality (Bolte et al. 2017)

@ Let f be a proper lower-semicontinuous convex function on X.
@ Fix xp and p > 1.
Then, HEB holds for some x > 0 if and only if there exists ¢ > 0 such that

dist(0, 9F(x)) = c(F(x) — F)*, a=1— % €[0,1)

for all x with f(x) < f(xo).
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Adaptive algorithms

H Problem class

Adaptive to | Measure

Nesterov '07 p-strong conv. 1] llge(x)]]
Lin & Xiao '15

Fercoq & Qu '17 HEB with p =2 K llge ()|
Liu & Yang '17 HEB with known p | llgr ()]
This work HEB K, p llgc(x)]]
Roulet & d'Aspremont '17 || HEB Ky p F(x)— F*
Renegar & Grimmer '18
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Adaptive proximal-point strategy

Assumption: f is L-smooth (L is known) and admits HEB for some x, p.

Algorithm I
X0 € R, 0 > 0 (regularization parameter). Set X, := prox, ,; (xo — Vf(x0)/L)

t-th stage (t =0,1,2,...,):

(a) Compute X0 XM (= proxg, (x;")) via accelerated gradient method
applied to F, . starting from x;", running K; iterations, where

Ke i= O()y/L]a log((L+0)/a), Fyui(x) i= F()+ 5lx = 712
(*) If [lgt(x) < llge(xe)ll/2 holds at some k,
then set x;y1 := Xt(k), Xy = proxg (xes1 — VF(xer1)/L)
and go to (t + 1)-th stage.
(b) Set o < 0/2 and retry t-th stage.
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lteration complexity of the proposed method

Proposed method:
Xt11 ¢ Accelerated Gradient Method (F,, .-, x;", Ki) = proxg,, (x;")

Xq = proxg s (Xe1 — VF(xey1)/L)
If ||gr(xe1)]l < |lgL(x¢)||/2 then, go to (t + 1)-th stage.
Otherwise, set o < ¢ /2 and retry t-th stage.
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Iteration complexity of the proposed method

Proposed method:
Xt11 ¢ Accelerated Gradient Method (F,, .-, x;", Ki) = proxg,, (x;")

xt+1 i= proxg . (xt+1 — VI (xe41)/L)
If ||gr(xe1)]l < |lgL(x¢)||/2 then, go to (t + 1)-th stage.
Otherwise, set o < ¢ /2 and retry t-th stage.

Main result Il

Iteration complexity of the proposed method when ¢ is initialized by o := L:

Case | p=1] 1<p<2 | p=2 | p>2
Convergence of ||gi(x:)|| || finite | superlinear linear sublinear
=3
Complexity w.r.t. ¢ const | O(loglog 1) | O(log 1) | O(e™ D log 1)

(+1) = (flog Liogl ) (x2) =0 ( — =7 log i)
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Near optimality

If F admits HEB for some xp € R”, p > 1, k > 0, then

F(xt) — F* <275 (1> T le )7, Wx with F(x) < Fxo).
K

where x* := prox, ,, (x — Vf(x)/L).

@ A lower complexity bound for F(x) — F* induces the one for || g.(x)||.

@ Lower iteration complexity bound for F(x) — F* is known in the case g =0
(In this case p must be > 2) [Nemirovsky & Nesterov 1985].

Case Hp:l‘ 1<p<?2 ‘ p=2 ‘ p>2
Convergence of ||g.(x¢)|| || finite | super-linear linear sublinear
)
Complexity w.r.t. e const | O(loglog 1) | O(log?) O(e~ %1 log 1)

nearly optimal

@ Proposed method also ensures the near optimality w.r.t. F(x) — F*.
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@ Developed a simple adaptive proximal-point strategy of first-order method
under the measure ||g.(x)||-
@ For minimization L-smooth functions, we can achieve the iteration complesity

] ( Ldist0o.X7) |og i) without knowing dist(xp, X*).

@ We can adapt to the HEB condition and attain nearly optimal complexity.

Future interest
@ Nonsmooth case or weakly smooth case.

@ Other error bound conditions.
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