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Symbols and Notations
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DA, DAM — Dual-Averaging, Dual-Averaging Method (Section 3.1.2)
Df (y, x) — the Bregman distance associated with the function f between x and y

(2.1.10)
Diam(Q) — the diameter of the set Q in (E, ∥·∥), i.e., supx,y∈Q ∥x− y∥
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(2.1.4)
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mf (y;x) — a lower approximation model of the function f at y (cf. Section 4.2.2)
NSP(g, σ) — the class of non-smooth problems with gradient mapping g and convexity

parameter σ > 0 (Definition 4.2.6)
PGM — Proximal Gradient Method (Section 2.3.1)
riA — the relative interior of the set A in (E, ∥·∥)
Sk —

∑k
i=0 λi for weight parameters {λi}i≥0

SP(mf , σf , σ̄f , L, δ) — the class of structured problems (Definition 4.2.7)
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σ(f) — the set {σ ≥ 0 | f −σd is convex on Q} where d is a prox-function on Q

(4.2.1)
∥s∥∗ — the dual norm of s ∈ E∗ of the norm ∥·∥ (2.0.1)
⟨s, x⟩ — the value s(x) of s ∈ E∗ at x ∈ E
∂f — the subdifferential of the function f (2.1.2)

vii





Chapter 1

Introduction

1.1 Purpose of the thesis

Subgradient- and gradient-based methods for convex optimization problems have been one
of major interests in optimization in the last decades, providing efficient approaches for the
recent demands to solve large-scale optimization problems which arise from image/signal
processing, data mining, statistics, etc. Due to their cheap iteration cost, these methods can
be an efficient solution to large-scale optimization rather than Newton-type methods when
the desired accuracy for the solutions is moderate.

The (oracle-based) iteration complexity theory [46, 49] established a fundamental measure
of efficiency for subgradient-based methods and consequently many methods were demon-
strated to be of ‘optimal’ complexity for various classes of convex optimization problems. The
major interest on the subgradient-based methods were paid to the so called proximal gradi-
ent methods (PGMs) whereas the conditional gradient methods (CGMs) have been another
new focus in the past few years. The approaches to analyze the existing subgradient-based
methods are often different for each method and for each class of problems.

This thesis is devoted to establish a methodology on developing efficient subgradient-
based methods, the PGMs and the CGMs, unifying several existing methods. It provides
a unifying view of known subgradient-based methods where some of them have different
types or were originally analyzed in different ways. The unifying framework also yields new
optimal complexity methods which sometimes improve and/or extend existing results. The
idea of our unifying framework could be helpful for further developments and analysis of
subgradient-based methods. The subsequent sections summarize details on our results.

1.2 Background

1.2.1 Subgradient-based methods

Throughout this thesis, we focus on convex optimization problems

(P )

{
minimize f(x)
subject to x ∈ Q

over a finite dimensional normed space (E, ∥·∥) with its topological dual space (E∗, ∥·∥∗) and
the dual pairing ⟨·, ·⟩. Here f and Q are called the objective function and the feasible set of
(P ), respectively, and assumed that Q is a closed convex subset of E and f : E → R∪{+∞}
is a lower semicontinuous proper convex function with Q ⊂ dom f = {x ∈ E | f(x) < +∞}.
We assume that (P ) has at least one optimal solution x∗ ∈ Q. Our aim on solving the
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Chapter 1 Introduction

problem (P ) is to find an ε-solution for (P ), i.e., a point x̂ ∈ Q with f(x̂)− f(x∗) < ε, for a
given absolute accuracy ε > 0.

A subgradient-based method of solving (P ) is an iterative scheme generating a sequence of
approximate solutions, which basically consists of two main computations at each iteration.
The first one is the evaluation of the objective function f at some test point x ∈ Q up to
its first-order information, namely, the value f(x) and a subgradient g ∈ ∂f(x) = {g ∈ E∗ |
f(y) ≥ f(x) + ⟨g, y − x⟩ , ∀y ∈ E}. Such information can be formulated as an oracle for f
which plays a crucial role to define the ‘complexity’ of these methods. Note that if the convex
objective function f is Gâteaux differentiable at x, then the only subgradient of f at x is the
gradient ∇f(x). The second main computation is to solve a subproblem of minimizing some
auxiliary function over the feasible set Q. The difficulty of the subproblem depends on the
definition of the auxiliary function which affects the efficiency of the method.

The iteration (or oracle-based) complexity of a subgradient-based method for a given
absolute accuracy ε > 0 is defined to be the minimal number of evaluations of the oracle in
the method to find an ε-solution for (P ). The iteration complexity ignores the computational
cost per iteration. According to the types of subproblems at each iteration, subgradient-based
methods of recent interest can be classified into two types:

• Proximal Gradient Method (PGM) solves subproblems of the form minx∈Q{⟨s, x⟩+d(x)}
for some s ∈ E∗ at each iteration. The function d(x) is a Gâteaux differentiable strongly
convex function on Q called a prox-function.

• Conditional Gradient Method (CGM) solves subproblems of the form minx∈Q ⟨s, x⟩ for
some s ∈ E∗ at each iteration. In this case, Q is assumed to be compact in order to
ensure the existence of a solution to the subproblems.

The CGMs usually ensures worse iteration complexity than the PGMs while the former has
cheaper cost per iteration than the latter, compensating the overall cost.

1.2.2 Classes of convex optimization problems

Given a feasible set Q and a family F of objective functions, a class of optimization problems
minx∈Q f(x), f ∈ F is defined. Subgradient-based methods for the following two classes of
convex optimization problems were particularly well studied in the literature.

• Non-smooth problems. The problems minx∈Q f(x) of minimizing convex functions with
bounded subgradients on Q (or minimizing Lipschitz convex functions). This corre-
sponds to consider the class of convex functions f on Q such that Mf (Q) := sup{∥g∥∗ :
g ∈ ∂f(x), x ∈ Q} < +∞.

• Smooth problems. The problems minx∈Q f(x) of minimizing f in the class F = F1
L(Q)

of Gâteaux differentiable convex functions with L-Lipschitz continuous gradients on Q,
namely, ∥∇f(x)−∇f(y)∥∗ ≤ L, ∀x, y ∈ Q.

As their generalization, the following class of convex optimization problems received attention
recently.

• Weakly smooth problems. The problems minx∈Q f(x) with f in the class F = Fν
M (Q)

(M ≥ 0, ν ∈ [0, 1]), namely, f is a subdifferentiable convex functions on Q such that
∥g1 − g2∥∗ ≤ M ∥x1 − x2∥ν , ∀xi ∈ Q, ∀gi ∈ ∂f(xi), i = 1, 2. In the case ν ̸= 0,
we have the Gâteaux differentiability of f on Q and so this condition is equivalent to

2



1.2 Background

the Hölder condition ∥∇f(x1)−∇f(x2)∥∗ ≤ M ∥x1 − x2∥ν , ∀x1, x2 ∈ Q. Non-smooth
problems is included in this class because f ∈ F0

2M (Q) holds whenever Mf (Q) ≤M .

The strong convexity of the objective function f is also often concerned because it enables
us to construct subgradient-based methods with better iteration complexity. We say f is
σf -strongly convex on Q (with convexity parameter σf ≥ 0) if f(αx + (1 − α)y) ≤ αf(x) +
(1− α)f(y)− 1

2σfα(1− α) ∥x− y∥2 , ∀x, y ∈ Q, ∀α ∈ [0, 1].

Tight lower bounds on the iteration complexity of subgradient-based methods for various
classes of convex optimization problems have been established [27, 33, 45, 46, 49]. Table 1.1
summarizes the ones for the non-smooth, the smooth, and the weakly smooth problems when
(E, ∥·∥) is a Euclidean space. In fact, the tightness are attained by some (optimal) PGMs.

non-smooth smooth weakly smooth
M =Mf (Q) F1

L(Q) Fν
M (Q) (ν ̸= 1)

non strongly convex
(σf = 0)

Θ

(
M2R2

ε2

)
Θ

(√
LR2

ε

)
c1(ν)

(
MR1+ν

ε

) 2
3ν+1

σf -strongly convex Θ

(
M2

σfε

)
Θ

(√
L

σf
log

1

ε

)
c2(ν)

(
M2

σ1+ν
f

1

ε1−ν

) 1
3ν+1

Table 1.1: Tight lower bounds of the iteration complexity of subgradient-based methods in
the Euclidean setting. Here R := ∥x0 − x∗∥ for a starting point x0 ∈ Q and c1(ν) and c2(ν)
are fixed continuous functions depending only on ν.

On the other hand, the following upper bound of the iteration complexity of existing
CGMs can be ensured for the weakly smooth problems Fν

M (Q) (cf. [55]):

O

((
MDiam(Q)1+ν

ε

) 1
ν

)
where Diam(Q) := sup

x,y∈Q
∥x− y∥ .

This bound is known to be nearly optimal [27]. In particular, it is optimal if ν = 1 in view
of the complexity based on the linear optimization oracle [35].

1.2.3 Previous works

It have been proposed many subgradient-based methods for each classes of convex optimiza-
tion problems mentioned above. We at first focus on the PGMs. The basic and important
PGMs are the Mirror-Descent Method (MDM) and the Dual-Averaging Method (DAM) for
the non-smooth problems. They support the basics of our study in this thesis and are related
to many other existing subgradient-based methods.

The Mirror-Descent Method (MDM) was proposed by Nemirovski-Yudin [46] and iterates
the procedure

xk+1 := argmin
x∈Q

{
λk[f(xk) + ⟨gk, x− xk⟩] + ξ(xk, x)

}
, k = 0, 1, 2, . . . ,

starting from x0 ∈ Q where gk ∈ ∂f(xk), λk > 0 is a weight parameter, and ξ(y, x) :=
d(x) − d(y) − ⟨∇d(y), x− y⟩ is the Bregman distance induced by a prox-function d(x), a
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Chapter 1 Introduction

Gâteaux differentiable and σd-strongly convex function on Q. In the non strongly convex case,
the MDM ensures the optimal iteration complexityO(M2R2/ε2) with fixing the total iteration
number and requiring to know upper bounds R ≥

√
d(x∗)/σd and M ≥ Mf (Q) in advance.

If we further assume the boundedness of Q, technical averages [43, 44] of {xk} provide an
ε-solution with the iteration complexity O(1/ε2) without these requirements (Knowing M
and the diameter D of Q further provides the optimal complexity O(M2D2/ε2)).

The Dual-Averaging Method (DAM) proposed by Nesterov [52], on the other hand, iterates

xk+1 := argmin
x∈Q

{
k∑

i=0

λi[f(xi) + ⟨gi, x− xi⟩] + βkd(x)

}
, k = 0, 1, 2, . . . , (1.2.1)

with the initial point x0 ∈ Q where gk ∈ ∂f(xk), {λk}k≥0 is the positive weight parameters,
and {βk}k≥−1 is a nondecreasing sequence of positive numbers called the scaling parameters.
In contrast to the MDM, the DAM ensures the iteration complexity O(1/ε2) without fixing
the total iteration number and knowing the above upper bounds R and M . Knowing R and
M further ensures the optimal complexity O(M2R2/ε2). The same advantage is also valid
for the variants [56] of the DAM.

For the non-smooth problems in the strongly convex case, the MDM ensures the optimal
iteration complexity O(M2/(σfε)) [3, 42, 43]. The optimal complexity of the DAM can be
achieved if we exploit a multistage procedure [33].

For the smooth problems (f ∈ F1
L(Q)), the first optimal PGM was established by Nesterov

[47] in 1983. There are several variants [2, 4, 23, 38, 49, 50] and extensive consideration to
some structured problems such as the composite structure [7, 53, 58, 59], the mixed smooth-
ness structure [12, 25, 26, 34, 37], and the inexact oracle model [17, 18]. Tseng [58, 59]
demonstrated a unified treatment of some of these methods separating into three algorithms.
In particular, the second and the third Accelerated Proximal Gradient (APG) methods [59]
solve quite similar subproblems as the MDM and the DAM, respectively. Furthermore, the
Nesterov’s modified method [50] can be seen as the hybrid version of the two Tseng’s methods
because it involves two subproblems in the Tseng’s methods at each iteration. The Tseng’s
APG methods and the Nesterov’s modified method ensure the optimal complexity in the
non strongly convex case whereas the optimality in the strongly convex case is not known.
In the strongly convex case, there are efficient PGMs for the smooth problems [47, 49], the
composite structure [15, 26, 53], the mixed smoothness structure [12, 26], and the inexact
oracle model [17]. They ensure the optimal complexity for the smooth problems.

For the weakly smooth problems (f ∈ Fν
M (Q)), Nemirovski and Nesterov [45] established

optimal PGMs for this class in both the non strongly and the strongly convex cases. In the
strongly convex case, their method exploits a multistage procedure requiring a prior knowl-
edge M , ν, a convexity parameter σf of f , and an upper bound R ≥ ∥x0 − x∗∥. Recently,
some adaptive PGMs [36, 54, 61] were proposed which ensure the optimal complexity in the
non strongly convex case without knowing M and ν.

The CGMs, on the other hand, have received great attention in past few years due to
its advantage for large-scale optimization [14, 28, 31, 32]. The CGM proposed by Frank
and Wolfe [21] is the classical one and convergence properties of CGMs are well analyzed in
particular for the smooth problems (see [16, 19, 22, 35, 55, 57] and references therein). It
is interesting to see that the recent Lan’s CGMs, Algorithms 4 and 5 in [35], have similar
fashion to the Tseng’s second and third APG methods, respectively, as clarified in this thesis.
Some extensive concerns of the CGM to the composite structure [1, 3, 24], the inexact oracle
model [22], and the weakly smooth problems [55] were also studied.
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1.3 Our work and contributions

1.3 Our work and contributions

In this thesis, we establish a unifying framework of subgradient-based methods, that is, Meth-
ods I and II endowed with Properties A and B. Our framework provides a family of subgradient-
based methods and a methodology to analyze them. As a consequence, several existing
methods can be unified with some new extensions and improvements on their convergence
properties. The development in this thesis covers the papers [29, 30] by the author and
Fukuda.

We emphasis the crucial points of our approach and contributions dividing into three
parts.

1.3.1 Unifying subgradient-based methods

Let us see how we unify existing methods. The essential motivation is to construct axiomatic
properties (Property A) of the auxiliary functions {φk(x)} in the subproblems minx∈Q φk(x)
solved at each iteration. For instance, the following construction of the auxiliary functions
{φk(x)} which we call the Dual-Averaging (DA) model satisfies Property A:

φk(x) :=
k∑

i=0

λi[f(xi) + ⟨gi, x− xi⟩] + βkd(x) for the same parameters as the DAM (1.2.1)

The DA model enables to handle the dual-averaging type methods such as the DAM, the
Tseng’s third APG method, and a particular instance of the Lan’s CGM (Algorithm 5 in
[35]). Moreover, we propose the Extended Mirror-Descent (EMD) model defined by φ−1(x) :=
β−1d(x) and

φk+1(x) := φk(zk)+λk+1[f(xk+1)+⟨gk+1, x− xk+1⟩]+βk+1d(x)−βk[d(zk)+⟨∇d(zk), x− zk⟩]

where zk := argminx∈Q φk(x). The EMD model satisfies Property A and permit to deal with
the MDM, the Tseng’s second APG method, and a particular instance of the Lan’s CGM
(Algorithm 4 in [35]). We also propose an extension, Property B, of Property A involving
two kinds of auxiliary functions to handle the Nesterov’s modified gradient method.

We proceed all of our analysis under Properties A and B. We propose two general
subgradient-based methods (Methods I and II) and show their analysis under the proper-
ties. As a consequence, for each particular classes of convex optimization problems, we
obtain a family of subgradient-based methods and their convergence estimates. Table 4.1 in
Section 4.3.4 summarizes existing methods yielded from the proposed method.

We remark that Tseng [58, 59] already established a unified treatment on existing PGMs.
Our unifying framework differs from Tseng’s work in view of the following two points. First,
the Tseng’s second and third APG methods (unifying several known methods) require inde-
pendent convergence analysis while we absorbed their difference via Property A. Second, our
framework additionally includes not only PGMs but also CGMs. Moreover, we also focus on
the weakly smooth problems and/or the strongly convex case which in particular generalize
the original Tseng’s APG methods.

It will turn out in Section 5.1 that Property A has a close relation to the Nesterov’s
estimate sequence framework [48, 49] which is a powerful principle for the construction of
optimal PGMs especially for the smooth problems. Our approach further covers other types
of convex optimization problems (e.g., the non-smooth problems) and other types of methods
(namely, the CGMs).
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Chapter 1 Introduction

1.3.2 New convergence analysis and extended methods for non-smooth
problems

We propose Method I for the non-smooth problems defined in the previous section. We prove
that the PGMs yielded by Method I achieve the optimal iteration complexity (see Table 1.1).

In the non strongly convex case, we prove that Method I ensures the iteration complexity
O(1/ε2) without fixing the total iteration number and knowing upper bounds M = Mf (Q)
and R ≥

√
d(x∗)/σd. Moreover, the optimal complexity O(M2R2/ε2) is ensured if we know

M and R. In particular, Method I employing the DA model yields the Nesterov’s DAM and
its variant [56] with the same advantage.

As a byproduct, we obtain a novel extension of the MDM, the extended MDM (Method 4.3.5),
exploiting the EMD model: Start from x0 ∈ Q and iterate

xk+1 := argmin
x∈Q

{λk[f(xk) + ⟨gk, x− xk⟩] + βkd(x)− βk−1ℓd(zk−1;x)}, k = 0, 1, 2, . . . . .

The original MDM is obtained by taking βk ≡ 1. However, strategic choices of {βk} permit
the same advantage as the DAM improving the original drawbacks on the MDM. In particular,
in contrast to known averaging techniques [43, 44], the iteration complexity O(1/ε2) can be
guaranteed even if the feasible set Q is unbounded.

We also show that Method I achieves the optimal iteration complexity in the strongly
convex case. This yields a new strongly convex extension of the DAM which ensures the
optimality without employing a multistage procedure in contrast to [33]. Moreover, it is
interesting to see that Method I with the EMD model in this case yields the results of the
Nedić-Lee’s averaging [43] and the Bach’s variant [3].

1.3.3 New convergence analysis and extended methods for structured prob-
lems

We also propose Method II for solving the structured problems which include the smooth and
the weakly smooth problems as well as their extension such as the composite structure, the
mixed smoothness structure, and the inexact oracle model. The class of structured problems
is basically a generalization of the inexact oracle model which permits new analysis of PGMs
and CGMs for the weakly smooth problems and the mixed smoothness structure.

Method II consists of two kinds of gradient-based methods, the classical and the modified
methods. The classical method with the DA and the EMD models yields the primal and
the dual gradient methods [17, 18, 53], respectively. The modified method includes the three
particular PGMs: the Tseng’s second APG method via the EMD model, the Tseng’s third
APG method via the DA model, and the Nesterov’s modified method via their hybrid (which
satisfies Property B). Moreover, the modified method with the EMD and DA models also
includes particular instances of the two Lan’s CGMs mentioned in the previous section. This
explains a relation between the Tseng’s APG methods and the Lan’s CGMs. In fact, their
general convergence analysis will be proceeded in a unified way.

The classical method of Method II is analyzed for the smooth/composite problems or the
inexact oracle model. We prove its rate of convergence recovering results for the primal and
dual gradient methods [17, 18, 53]. In the strongly convex case, our convergence estimate has
a better linear convergence factor compared to [53] and a better coefficient factor compared
to [17].

The modified method of Method II applied to the inexact oracle model yields a slight
improvement on the convergence estimate by Devolder et al. [17]. Moreover, our result applied
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1.4 Outline of the thesis

to the smooth or the composite problems yields the same optimality result as the Nesterov’s
accelerated method [53]. As a consequence, we obtain strongly convex extensions of the above
mentioned three particular PGMs of the modified method.

The modified method of Method II is also analyzed for the weakly smooth problems and
the mixed smoothness structure. In particular, for weakly smooth problems we obtain new
optimal PGMs for strongly convex case with less prior requirements than the existing method
[45]. We also provide an analysis of CGMs including the Lan’s CGM for the weakly smooth
problems leading the same iteration complexity as the other CGMs [55]. We remark that
our result in the non strongly convex case is less practical because the attainment of the
optimality requires parameters in the Hölder condition while some recent adaptive PGMs
[36, 54, 61] are freed from this requirement.

1.4 Outline of the thesis

This thesis is organized as follows.
We start Chapter 2 by fundamentals of convex analysis and optimization in particular for

first-order methods. The prepared materials on the convex analysis are simple. For instance,
we do not deal with duality theory of convex functions. Important notions are the strong
convexity (with the notion of the Bregman distance), the Lipschitz functions, and the class
Fν
M (Q) of weakly smooth functions, introduced in Section 2.1. The oracle-based complexity

theory is described in Section 2.3. Then, important classes of convex optimization problems
and their known complexity results are shown in Section 2.4.

Chapter 3 reviews existing PGMs and CGMs. The methods which will be unified in the
next chapter are described in detail remarking their known convergence results. We focus on
the MDM, the DAM, and variants of the DAM for the non-smooth problems in Section 3.1.
In Section 3.2, we review gradient-based methods. In particular, we describe the primal and
dual gradient methods [18, 53], the Tseng’s APG methods, the Nesterov’s modified method,
and the Lan’s CGMs as unified in Chapter 4.

Chapter 4 is the main part of the thesis. In Section 4.2, we at first introduce the notion
of the strong convexity with respect to the prox-function, which generalizes the canonical
strong convexity in the Euclidean setting. Using this notion, we define two classes of convex
optimization problems, namely, the classes of the non-smooth and the structured problems.

Sections 4.3 and 4.4 are the core of the unifying framework. We introduce Properties A
and B for auxiliary functions and we then propose Methods I and II. We show that sev-
eral subgradient-based methods arises as particular instances of the proposed methods (Sec-
tion 4.3.4). We also propose Method 4.3.5 as a novel extension of the MDM. Section 4.4
demonstrates a unified analysis of the proposed methods concluding general convergence
estimates.

Finally, our general convergence estimate is used to establish optimal complexity results
(or nearly optimal ones for CGMs) of the proposed methods for particular classes of convex op-
timization problems, namely, the non-smooth problems (Section 4.5), the smooth/composite
problems as well as the inexact oracle model (Section 4.6), and the weakly smooth problems
(Section 4.7). We compare our results with known ones reviewed in Chapter 3.

Chapter 5 discusses final concluding remarks on the unifying framework. Section 5.1
indicates a relationship with our unifying framework and the Nesterov’s estimate sequence
technique. We remark further considerable research directions in Section 5.2.
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Chapter 2

Basic Theory

We collect basic tools of convex analysis and optimization, in Sections 2.1 and 2.2, necessary
to our development in the subsequent chapters. See, e.g., [5, 60] for fundamentals of convex
analysis. In Section 2.3, we introduce the notion of oracle-based methods and their iteration
complexity. We also define the proximal and the conditional gradient methods. Then, we
review important classes of convex optimization problems and known iteration complexity
results in Section 2.4.

Throughout the thesis, E denotes a finite dimensional real normed space endowed with
the norm ∥·∥. The dual space of E is denoted by E∗ equipped with the dual norm ∥·∥∗ on
E∗:

∥s∥∗ := sup
∥x∥≤1

⟨s, x⟩ (2.0.1)

where ⟨s, x⟩ is the value of the functional s ∈ E∗ at x ∈ E.

For a set A ⊂ E, the interior, the closure, and the relative interior of A are denoted
by intA, clA, and riA, respectively. We denote the core of A by coreA = {x ∈ A | ∀d ∈
E, ∃td > 0 s.t. ∀t ∈ [0, td], x+ td ∈ A}.

2.1 Convex functions

A convex set is a set C ⊂ E which satisfies αx+ (1− α)y ∈ C for all x, y ∈ C and α ∈ [0, 1].

For a function f : E → R ∪ {+∞}, we define the domain of f by

dom f := {x ∈ E : f(x) < +∞}. (2.1.1)

We call f proper if dom f ̸= ∅ (namely, f ̸≡ +∞). A function f : E → R ∪ {+∞} is said to
be convex if we have

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y), ∀x, y ∈ E, ∀α ∈ [0, 1].

We say f is convex on a convex set Q if f is convex and Q ⊂ dom f .

The subdifferential of f : E → R ∪ {+∞} at x ∈ E is defined by

∂f(x) := {g ∈ E∗ : f(y) ≥ f(x) + ⟨g, x− y⟩ , ∀y ∈ E} (2.1.2)

and each element of ∂f(x) is called a subgradient of f at x ∈ E. We say that f is subdifferen-
tiable at x ∈ E if ∂f(x) ̸= ∅. The set of all points at where f is subdifferentiable is denoted
by

dom(∂f) := {x ∈ E | ∂f(x) ̸= ∅}. (2.1.3)
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2.1 Convex functions

For a function f : E → R ∪ {+∞}, the directional derivative of f at x ∈ dom f along
d ∈ E is defined by

f ′(x; d) := lim
α↓0

f(x+ αd)− f(x)

α
(2.1.4)

if the limit exists.
Let f be a convex function. For x ∈ dom f , the directional derivative f ′(x; d) exists for

every d ∈ E and the followings hold [60, Theorem 23.1]:

f ′(x; d) = inf
α>0

f(x+ αd)− f(x)

α
, (2.1.5)

f ′(x; d) ≥ −f ′(x;−d), ∀d ∈ E. (2.1.6)

Taking d = y − x and α = 1 in the inequality (2.1.5) yields

f(y) ≥ f(x) + f ′(x; y − x), ∀x ∈ dom f, ∀y ∈ E. (2.1.7)

We say that f is (Gâteaux) differentiable at x ∈ dom f if there exists ∇f(x) ∈ E∗, the
gradient of f at x, such that f ′(x; d) = ⟨∇f(x), d⟩ holds for all d ∈ E. It is important to note
that a convex function f is differentiable at x ∈ dom f if and only if ∂f(x) is a singleton; at
the same time, we have ∂f(x) = {∇f(x)} [60, Theorem 25.1].

Lower semicontinuity

We say that a function f : E → R∪{+∞} is lower semicontinuous (lsc, for short) at a point
x ∈ E if we have

f(x) ≤ lim inf
y→x

f(y) := sup
ε>0

inf
∥y−x∥<ε

f(y).

f is said to be lower semicontinuous on S for a subset S ⊂ E if f is lsc at every point in S. It
is well-known that the following conditions are equivalent for any function f : E → R∪{+∞}
[60, Theorem 7.1]:

(i) f is lsc on E,

(ii) the level set {x ∈ E | f(x) ≤ α} is closed for every α ∈ R,

(iii) the epigraph {(x, t) ∈ E × R | f(x) ≤ t} of f is a closed subset of E × R.

Strong convexity

Let f : E → R ∪ {+∞} be a convex function, Q (⊂ dom f) be a convex set, and σ be
a nonnegative real number. We say that f is strongly convex on Q with parameter σ (or
σ-strongly convex on Q) if we have

f(αx+(1−α)y) ≤ αf(x)+(1−α)f(y)− 1

2
σα(1−α) ∥x− y∥2 , ∀x, y ∈ Q, ∀α ∈ [0, 1]. (2.1.8)

Therefore, f is 0-strongly convex on Q if and only if f is convex on Q.

Proposition 2.1.1. Let f : E → R ∪ {+∞} be a convex function and Q (⊂ dom f) be a
convex set. Then, f is σ-strongly convex on Q if and only if

f(x) ≥ f(y) + f ′(y;x− y) +
1

2
σ ∥x− y∥2 , ∀x, y ∈ Q. (2.1.9)
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Chapter 2 Basic Theory

Proof. (2.1.8) ⇒ (2.1.9). Pick x, y ∈ Q. For any α ∈ (0, 1), the definition of the strong
convexity of f implies

f(y) ≥ f(x+ (1− α)(y − x))− αf(x)

1− α
+ α

σ

2
∥x− y∥2

= f(x) +
f(x+ (1− α)(y − x))− f(x)

1− α
+ α

σ

2
∥x− y∥2 .

Taking α ↑ 1, we obtain the inequality in (2.1.9) (Note that the directional derivative f ′(x; ·)
exists since x ∈ Q ⊂ dom f).
(2.1.9) ⇒ (2.1.8). Let x, y ∈ Q and α ∈ (0, 1). Set z = αx + (1 − α)y ∈ Q. Since
x− z = (1− α)(x− y) and y − z = α(y − x), we have

f(x)
(2.1.9)

≥ f(z) + f ′(z;x− z) +
σ

2
∥x− z∥2

= f(z) + (1− α)f ′(z;x− y) + (1− α)2
σ

2
∥x− y∥2

(2.1.6)

≥ f(z)− (1− α)f ′(z; y − x) + (1− α)2
σ

2
∥x− y∥2

and

f(y)
(2.1.9)

≥ f(z) + f ′(z; y − z) +
σ

2
∥y − z∥2 = f(z) + αf ′(z; y − x) + α2σ

2
∥y − x∥2 .

Thus,

αf(x)+(1−α)f(y) ≥ f(z)+
[
α(1−α)2+(1−α)α2

]σ
2
∥x− y∥2 = f(z)+α(1−α)σ

2
∥x− y∥2 .

□

Strongly convex functions have a coercivity condition:

Proposition 2.1.2. Let f be a lsc σ-strongly convex on a convex set Q (⊂ dom f) for a
positive constant σ > 0. Then, for any sequence {xk} ⊂ Q with ∥xk∥ → +∞, we have
f(xk) → +∞. Therefore, for any α ∈ R, the level set {x ∈ Q | f(x) ≤ α} is compact.

Proof. Since the assertion is clear if f ≡ +∞, suppose that f is proper. Then, there exist
s ∈ E∗ and β ∈ R such that f(x) ≥ ⟨s, x⟩ + β for every x ∈ E (see [60, Corollary 12.1.2]).
Fix a point x̄ ∈ dom f . The strong convexity of f implies

f((x+ x̄)/2) ≤ 1

2
f(x) +

1

2
f(x̄)− 1

2

(
1− 1

2

)
σ

2
∥x− x̄∥2 .

Then, for any x ∈ Q, we have

f(x) ≥ −f(x̄) + 2f((x+ x̄)/2) +
σ

4
∥x− x̄∥2

≥ −f(x̄) + 2

(⟨
s,
x+ x̄

2

⟩
+ β

)
+
σ

4
∥x− x̄∥2

≥ −f(x̄)− ∥s∥∗ ∥x+ x̄∥ − 2β +
σ

4
(∥x∥ − ∥x̄∥)2

≥ −f(x̄)− ∥s∥∗ (∥x∥+ ∥x̄∥)− 2β +
σ

4
(∥x∥ − ∥x̄∥)2.

This inequality implies for any {xk} ⊂ Q with ∥xk∥ → +∞ that f(xk) → +∞. □
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2.1 Convex functions

Bregman distance

Let Q be a convex set and f be a σ-strongly convex function on Q ⊂ dom f for a positive
constant σ. Suppose that f is differentiable on Q. Now we define a distance-like function,
called the Bregman distance [11] (or Bregman divergence) associated with f between x, y ∈ Q,
by

Df (y, x) := f(x)− f(y)− ⟨∇f(y), x− y⟩ . (2.1.10)

The domain of Df (y, x) is replaced by riQ×Q if f is essentially smooth relative to Q, that is,
f is differentiable on riQ and limk→∞ ∥∇f(xk)∥∗ = +∞ whenever {xk} ⊂ riQ, xk → Q\riQ.

For each y ∈ Q, the function Df (y, ·) is σ-strongly convex on Q with the derivative
∇xDf (y, x) = ∇f(x)−∇f(y). The following invariances are sometimes useful:

DDf (z,·)(y, x) = Df (y, x), Df(·)−α(y, x) = Df (y, x), ∀x, y, z ∈ Q, ∀α ∈ R. (2.1.11)

By Proposition 2.1.1 and the definition of ∇f(y), we have

Df (y, x) ≥
1

2
σ ∥x− y∥2 , ∀x, y ∈ Q. (2.1.12)

In particular, the equality Df (y, x) = 0 holds if and only if x = y. We say Df grows
quadratically on Q with a constant A > 0 if we have

Df (y, x) ≤
1

2
A ∥x− y∥2 , ∀x, y ∈ Q. (2.1.13)

The following examples of Bregman distance are well-known.

Example 2.1.3.

(1) Euclidean setting. Suppose that E is a Euclidean space, the norm ∥·∥ is induced by its
inner product, and f(x) = 1

2 ∥x∥
2. Then, for x, y ∈ E, we have

Df (y, x) =
1

2
∥x− y∥2 .

(2) Let E = Rn be equipped with the ℓ1-norm ∥x∥ :=
∑n

i=1 |x(i)|. Let ∆n be the unit simplex
in Rn, that is, ∆n = {x = (x(1), . . . , x(n)) ∈ Rn |

∑n
i=1 x

(i) = 1, x(i) ≥ 0}. The function
f(x) =

∑n
i=1 x

(i) log x(i) (where 0 log 0 := 0) is essentially smooth relative to ∆n and 1-
strongly convex on ri∆n (see [6, Proposition 5.1]). The Bregman distance associated with f
between x ∈ ∆n and y ∈ ri∆n is given by

Df (y, x) =
n∑

i=1

x(i) log
x(i)

y(i)
.

□

Lipschitz functions

Let f : E → R ∪ {+∞} and Q ⊂ dom f . We say that f is L-Lipschitz on Q with constant
L ≥ 0 if

|f(x)− f(y)| ≤ L ∥x− y∥ , ∀x, y ∈ Q.

The constant L is called a Lipschitz constant of f on Q. The following fact shows a relation
between the least Lipschitz constant and the greatest norm of subgradients.
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Proposition 2.1.4. Let f : E → R ∪ {+∞} be a proper convex function. Denote

Lf (Q) := sup
x,y∈Q
x ̸=y

|f(x)− f(y)|
∥x− y∥

, Mf (Q) := sup{∥g∥∗ | x ∈ Q, g ∈ ∂f(x)}. (2.1.14)

(i) For any set Q ⊂ dom f , we have Mf (coreQ) ≤ Lf (Q).

(ii) For any set Q ⊂ dom(∂f), we have Lf (Q) ≤Mf (Q), that is, f is Mf (Q)-Lipschitz on
Q.

In particular, we have Lf (int(dom f)) =Mf (int(dom f)).

Proof. (i) Take x ∈ coreQ and g ∈ ∂f(x). By the definition of the dual norm, it suffices to
show

⟨g, y⟩ ≤ Lf (Q), ∀y ∈ E, ∥y∥ ≤ 1.

For any y ∈ E with ∥y∥ ≤ 1, there exists t > 0 such that x + ty ∈ Q (because x ∈ coreQ).
Then,

⟨g, y⟩ = 1

t
⟨g, (x+ ty)− x⟩ ≤ f(x+ ty)− f(x)

t
≤
Lf (Q) ∥(x+ ty)− x∥

t
= Lf (Q) ∥y∥ ≤ Lf (Q).

(ii) Take x, y ∈ Q ⊂ dom(∂f) and g ∈ ∂f(x). Then,

f(x)− f(y) ≤ ⟨g, x− y⟩ ≤ ∥g∥∗ ∥x− y∥ ≤M ∥x− y∥ .

Similarly, f(y)− f(x) ≤ L ∥x− y∥ follows by taking g′ ∈ ∂f(y). □

Hölder condition: Class Fν
M (Q)

Here we introduce a class of convex functions satisfying the ‘Hölder condition’ on which we
develop a complexity theory and efficient first-order methods.

Definition 2.1.5. Let f : E → R ∪ {+∞}. We say that f belongs to the class Fν
M (Q) for

coefficient M ≥ 0 and exponent ν ∈ [0, 1] if f is a convex function with Q ⊂ dom(∂f) such
that

∥g1 − g2∥∗ ≤M ∥x1 − x2∥ν , ∀xi ∈ Q, ∀gi ∈ ∂f(xi). (2.1.15)

When ν = 0, the condition (2.1.15) becomes

∥g1 − g2∥∗ ≤M, ∀xi ∈ Q, ∀gi ∈ ∂f(xi).

For instance, if M :=Mf (Q) defined in (2.1.14) is finite, then we have f ∈ F0
2M (Q) because

∥g1 − g2∥∗ ≤ ∥g1∥∗ + ∥g2∥∗ ≤ 2M for any xi ∈ Q, gi ∈ ∂f(xi).
When ν > 0, the condition (2.1.15) implies the differentiability of f on Q since ∂f(x)

becomes a singleton for all x ∈ Q. In this case, the class Fν
M (Q) is the one of differentiable

convex functions on Q satisfying the Hölder condition:

∥∇f(x)−∇f(y)∥∗ ≤M ∥x− y∥ν , ∀x, y ∈ Q. (2.1.16)

The Lipschitz condition ∥∇f(x)−∇f(y)∥∗ ≤ M ∥x− y∥ (x, y ∈ Q) is a special case ν = 1
in the Hölder condition.
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Proposition 2.1.6. Let f be a convex function belongs to the class Fν
M (Q) for M ≥ 0 and

ν ∈ [0, 1]. Then, we have

f(x) ≤ f(y) + ⟨gy, x− y⟩+ M

1 + ν
∥x− y∥1+ν , ∀x, y ∈ Q, ∀gy ∈ ∂f(y)

Proof. When ν = 0, we have for any subgradient gx ∈ ∂f(x) that

f(x)− f(y) ≤ −⟨gx, y − x⟩ = ⟨gy, x− y⟩+ ⟨gx − gy, x− y⟩ ≤ ⟨gy, x− y⟩+M ∥x− y∥ .

Here, the last inequality follows from the fact ⟨s, x⟩ ≤ ∥s∥∗ ∥x∥ and the condition (2.1.15).

When ν > 0, on the other hand, f(x) is differentiable on Q and thus

f(x)− f(y)− ⟨∇f(y), x− y⟩ =

∫ 1

0
⟨∇f(y + τ(x− y))−∇f(y), x− y⟩ dτ

≤
∫ 1

0
∥∇f(y + τ(x− y))−∇f(y)∥∗ ∥x− y∥ dτ

≤
∫ 1

0
Mτν ∥x− y∥1+ν dτ =

M

1 + ν
∥x− y∥1+ν .

□

2.2 Convex optimization problems

Throughout this thesis, we focus on the convex optimization problems which is formally
written by

minimize f(x)
subject to x ∈ Q

(2.2.1)

or, simply, by minx∈Q f(x), where f : E → R ∪ {+∞} is a lsc convex function called the
objective function and Q ⊂ dom f is a closed convex set called the feasible set. The objective
of the problem (2.2.1) is to find the optimal value infx∈Q f(x) and/or an optimal solution
x∗ (the point in Q attaining the optimal value) if it exists. The set of optimal solutions is
denoted by

Argmin
x∈Q

f(x) := {x∗ ∈ Q : f(x) ≥ f(x∗), ∀x ∈ Q}.

We use the notation argminx∈Q f(x) as an (arbitrary) element in Argminx∈Q f(x) when the
observation is independent of the choice of the element.

For given ε > 0, we say that a point x̂ ∈ Q is an ε-solution to the problem (2.2.1) if
f(x̂)− infx∈Q f(x) < ε. In this thesis, we study algorithms of constructing an ε-solution for
given accuracy ε.

The following lemma gives a basic optimality condition of the convex optimization problem
(2.2.1).

Proposition 2.2.1. Let f : E → R ∪ {+∞} be a proper convex function and Q be a convex
subset of dom f . Then a point x∗ ∈ Q is an optimal solution to the problem minx∈Q f(x) if
and only if

f ′(x∗;x− x∗) ≥ 0, ∀x ∈ Q. (2.2.2)
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Proof. Suppose that x∗ satisfies (2.2.2). Since x∗ ∈ dom f , for every x ∈ Q, we have

f(x)
(2.1.7)

≥ f(x∗) + f ′(x∗;x− x∗)
(2.2.2)

≥ f(x∗).

Namely, x∗ is an optimal solution.
Now let us assume that the point x∗ does not admit the condition (2.2.2). Namely, we

assume the existence of a point x̄ ∈ Q such that

0 > f ′(x∗; x̄− x∗) = lim
t↓0

f(x∗ + t(x∗ − x̄))− f(x∗)

t
.

Then, for sufficiently small t ∈ (0, 1] we have 0 > f(x∗+t(x∗−x̄))−f(x∗)
t , and therefore f(x∗ +

t(x̄− x∗)) < f(x∗). Thus, x∗ is not optimal since x∗ + t(x̄− x∗) ∈ Q. □

The compactness of the feasible set in convex optimization problems ensures the existence
of an optimal solution as described in the following statements.

Proposition 2.2.2 (Proposition 2.8 in [5]). Let X be a compact topological space. Then a
real valued lsc function on X attains its minimum on X.

Corollary 2.2.3. Let f : E → R ∪ {+∞} be a proper lsc convex function and Q(⊂ dom f)
be a compact convex set. Then, f attains its minimum on Q.

The next property of a minimization of a strongly convex function is useful for our devel-
opment.

Proposition 2.2.4. Let f be a lsc σ-strongly convex function on a closed convex set Q(⊂
dom f) for a positive constant σ > 0. Then, f attains a unique minimum x∗ on Q. Moreover,
we have

f(x) ≥ f(x∗) +
σ

2
∥x− x∗∥2 , ∀x ∈ Q.

Proof. Take a point x0 ∈ Q ⊂ dom f . By Proposition 2.1.2, the level set Q′ := {x ∈ Q |
f(x) ≤ f(x0)} is compact. The optimization problem minx∈Q f(x) is equivalent to the one
minx∈Q′ f(x) and thus the existence of an optimal solution x∗ is guaranteed by Corollary 2.2.3.
The optimal solution is unique because strongly convex functions are strictly convex.

Finally, using Proposition 2.1.1 and the optimality condition (Proposition 2.2.1) prove
the assertion. □

2.3 First-order methods

In this section, we introduce the concept of oracle which is used to define iterative methods
and their iteration complexity. We prepare the following objects.

• Let Q ⊂ E be a closed convex set and F be a family of lsc convex functions. It defines
the family of convex optimization problems {minx∈Q f(x) : f ∈ F}.

• Let O be a mapping defined for points on F ×E which we refer an oracle for the class
F . The oracle O is said to be local if we have O(f, x) = O(g, x) whenever f, g ∈ F
satisfies f ≡ g on a neighborhood of x ∈ E. An important example of an oracle is the
first-order oracle O(f, x) = (f(x), g(x)) where g(x) ∈ ∂f(x). Remark that a first-order
oracle is not necessarily local if there is a convex function f ∈ F such that ∂f(x) is not
a singleton.
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With the above notations, an iterative method for the family {minx∈Q f(x) : f ∈ F} associated
with the oracle O is a sequence M = {Xk}k≥0 of functions Xk (corresponding to k-th
iteration); then, for each f ∈ F , the iterative method M generates a sequence {xk} ⊂ Q
defined by

xk = Xk((xi,O(f, xi))
k−1
i=0 ), k ≥ 0

where the initial point x0 is fixed by the iterative method M. In particular, an iterative
method associated with a first-order oracle is called a first-order method.

We define the iteration (or oracle-based) complexity of the method M for an accu-
racy ε > 0 by the smallest integer k such that the k-th result of M is an ε-solution of
minx∈Q f(x) for every f ∈ F . The iteration (or oracle-based) complexity of the class of prob-
lems {minx∈Q f(x) : f ∈ F} associated with an oracle O and an accuracy ε > 0 is the least
integer k among iterative methods M which finds an ε-solution within k calls of oracle for
every problems minx∈Q f(x), f ∈ F .

2.3.1 Proximal and conditional gradient methods

The iteration complexity measures the performance of methods by counting the number
of calls of an oracle. Therefore, it is independent of the ‘cost’ of the computation at each
iteration. Let us see a basic iteration of first-order methods and observe the cost per iteration.
Many of existing first-order methods solving the convex optimization problem minx∈Q f(x)
are variations of the following basic iteration.

1. Obtain the result of the (first-order) oracle at the test point xk.

2. Construct an auxiliary function φk(x) based on the oracle’s answer and the information
until the previous iteration.

3. Solve the subproblem minx∈Q φk(x) and find a solution zk ∈ Argminx∈Q φk(x).

4. Update the next test point xk+1 based on the previous results.

The auxiliary function φk(x) (or the subproblem minx∈Q φk(x)) will be a kind of approxi-
mation of the objective function f(x) (or the problem minx∈Q f(x)) based on the previous
information. In some actual methods, the steps 2 and 3 may involve multiple subproblems
using several auxiliary functions.

The construction of φk(x) is an important factor which affects the difficulty of solving
the subproblem minx∈Q φk(x) at each iteration. According to the construction of auxiliary
functions, there are two major kinds of first-order methods.

• Proximal (sub)Gradient Method (PGM) is an iterative method which solves subproblems
of the form

min
x∈Q

{⟨s, x⟩+ d(x)}, s ∈ E∗ (2.3.1)

at each iteration; the function d : E → R ∪ {+∞} is called the prox-function and
assumed to satisfy:

– d is differentiable and σd-strongly convex on Q (with σd > 0), and

– we have minx∈Q d(x) = 0.
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Chapter 2 Basic Theory

The second condition is not restrictive because we can replace d(x) by d(x)−minz∈Q d(z)
or by Dd(z, x) for arbitrary z ∈ Q; this replacement change neither the convexity
parameter σd nor the Bregman distance Dd(y, x) (recall (2.1.11)).

It is preferable to choose the prox-function so that the subproblem (2.3.1) can be easily
solvable. The choice will depend on the structure of the feasible set. See [50] for some
examples.

An illustrative PGM is the projected subgradient method for a convex function f on
Q in the Euclidean setting: Start from an initial point x0 ∈ Q and iterate xk+1 :=
πQ(xk − λkgk) with gk ∈ ∂f(xk) and λk > 0 (a weight parameter). Here πQ(x) :=
argminy∈Q ∥x− y∥2 is the orthogonal projection onto Q. The projected subgradient
method can be rewritten as

xk+1 = argmin
x∈Q

∥x− (xk − λkgk)∥22 = argmin
x∈Q

{
f(xk) + ⟨gk, x− xk⟩+

1

2λk
∥x− xk∥22

}
(2.3.2)

which becomes of the form (2.3.1) with s = λkgk − xk + x0 and the prox-function
d(x) := 1

2 ∥x− x0∥22.

• Conditional Gradient Method (CGM) is an iterative method which solves a linear opti-
mization of the form

min
x∈Q

⟨s, x⟩ , s ∈ E∗ (2.3.3)

at each iteration. In this case, we assume the boundedness of Q to ensure the existence
of an optimal solution of the subproblem. The following CGM, the classical CGM,
proposed by Frank and Wolfe [21] is the most basic one: For a differentiable convex
function f on Q, start from an initial point x0 ∈ Q and iterate

zk ∈ Argmin
x∈Q

⟨∇f(xk), x− xk⟩ , xk+1 := (1− τk)xk + τkzk

where τk ∈ [0, 1).

The CGMs have received great attention in past few years due to its advantage such as
the cheap iteration cost and sparsity of the approximate solution (see, e.g., [14, 28, 31,
32]).

A remarkable difference between the above two first-order methods is that the CGMs
would have worse iteration complexity than the PGMs while the computational cost of each
iteration of the former can be cheaper, compensating the overall cost. Therefore, it is impor-
tant to choose between the PGM or the CGM depending on the structure of the problem to
solve.

The PGM and the CGM can be extended to be composite-type when the objective function
f(x) has a composite structure, as we introduce next. Because our definition does not allow the
composite-type PGM/CGM to be a first-order method in general, we refer comprehensively
to all these kinds of methods as (sub)gradient-based methods.

2.4 Classes of convex optimization problems

Here we collect important classes of the convex optimization problem (2.2.1) below mentioning
known subgradient-based methods and their complexity guarantees. We will review further
details of some existing methods in Chapter 3.
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2.4 Classes of convex optimization problems

Non-smooth problems

Consider a convex optimization problem (2.2.1) where the objective function f is subdiffer-
entiable on Q. Let us employ the first-order oracle O : x 7→ (f(x), g(x)), g(x) ∈ ∂f(x).

Important (optimal) PGMs are the Mirror-Descent Method (MDM) proposed by Nemirovski-
Yudin [46] and the Dual-Averaging Method (DAM) proposed by Nesterov [52]. If we further
assume the boundedness condition

∥g∥∗ ≤M, ∀g ∈ ∂f(x), ∀x ∈ Q (2.4.1)

for a constant M > 0, the MDM and the DAM for this class of problems have the following
iteration complexity:

O

(
M2R2

ε2

)
(2.4.2)

where R :=
√

d(x∗)
σd

. This upper bound is optimal in the sense that the iteration complexity

for this class of problems has the lower bound min{n− 1,Θ(M2R2/ε2)} due to a worst case
analysis (see, e.g., [49, Theorem 3.2.1]).

When the objective function f is further strongly convex on Q with constant σf > 0, the
MDM [43] ensures the iteration complexity

O

(
M2

σfε

)
(2.4.3)

which is optimal for the strongly convex case [33].
We remark that the class of non-smooth problems is a subclass of weakly smooth problems

introduced later.

Smooth problems

Let us consider the class of convex optimization problems minx∈Q f(x) with objective func-
tions f ∈ F1

L(Q); that is, f(x) is differentiable on Q and ∇f(x) satisfies the Lipschitz condi-
tion ∥∇f(x)−∇f(y)∥∗ ≤ L ∥x− y∥ , ∀x, y ∈ Q with constant L > 0. Again, we employ the
first-order oracle O : x 7→ (f(x),∇f(x)) for this class.

In the Euclidean setting, the smooth problem is the most basic one in the examples here.
In this case, the iteration complexity for the smooth problems has the lower bound

Θ

(√
LR2

ε

)
(2.4.4)

where R = ∥x0 − x∗∥2 (if n is large enough; see [49, Theorem 2.1.7]). The first optimal PGM
were established by Nesterov [47] for this case and many other optimal PGMs are known
(e.g., [2, 4, 38, 49, 50] and see known methods for extended classes below).

When we further restrict the objective functions to be σf -strongly convex for a constant
σf > 0, the following lower complexity bound is known [49, Theorem 2.1.13]:

Θ

(√
L

σf
log

1

ε

)
. (2.4.5)

Nesterov established optimal PGMs [47, 49, 53] and several other optimal PGMs are known
which are available for further extended problems [12, 15, 17, 26].
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Chapter 2 Basic Theory

For CGMs, there are many considerations on the Frank-Wolfe method (see, e.g., [16, 19,
21, 22, 35, 55, 57]) whereas several new variants were investigated recently [24, 35, 55]. They
ensure the iteration complexity

O

(
LDiam(Q)

ε

)
(2.4.6)

for the smooth problems where Diam(Q) := supx,y∈Q ∥x− y∥ (for any norm ∥·∥). This
upper bound is known to be optimal in view of the iteration complexity based on the linear
optimization oracle [35].

Weakly smooth problems

Consider the convex optimization problems minx∈Q f(x) with objective functions f ∈ Fρ−1
M (Q),

ρ ∈ [1, 2]. Notice that the above introduced class of problems, the non-smooth and the smooth
ones, are subclasses of this case by setting ν = 0 and ν = 1, respectively.

For the weakly smooth problems, Nemirovski and Nesterov [45] (see also [20, Section 2.3])
proposed an optimal PGM with the optimal iteration complexities

c1(ρ)

(
MRρ

ε

) 2
3ρ−2

and c2(ρ)

(
M2

σρ
1

ε2−ρ

) 1
3ρ−2

, (2.4.7)

for non strongly and strongly convex cases, respectively, where R :=
√

d(x∗)
σd

, ρ := 1 + ν ∈
[1, 2), c1(·), c2(·) are continuous functions, and σ > 0 is a convexity parameter of f with
respect to the norm ∥·∥. The proposed method is further applicable for more general classes of
problems. Moreover, Nesterov [54] proposed the PGM, called the universal gradient method,
for the non strongly convex case which ensures the optimal complexity even if we do not know
M and ν, that is, the method adapts these parameters. The works [36, 61] also proposed
adaptive PGMs.

The studies [17, 18] of the inexact oracle model are also important. They proposed an
optimal method for weakly smooth problems in the non strongly convex case and a sub-
optimal one in the strongly convex case (PGMs for uniformly convex functions are also
discussed).

There are analysis of CGMs for the weakly smooth problems and the following iteration
complexity is known (see [14, Proposition 1.1] and [55])

O

((
MDiam(Q)1+ν

ε

) 1
ν

)
. (2.4.8)

When E is the vector space Rn equipped with the ℓ∞-norm ∥·∥ := ∥·∥∞, this bound is known
to be nearly optimal [27, Corollary 1].

Composite structure

Let us fix a lsc convex function Ψ(x) on Q. Consider an objective function f(x) with a
composite structure:

f(x) := f0(x) + Ψ(x) (2.4.9)

where f0(x) is differentiable on Q.
As we fixed the function Ψ(x), we consider a special kind of oracle and iterative method.

Let us employ the oracle O : x 7→ (f0(x),∇f0(x)), which is not necessarily a first-order oracle
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2.4 Classes of convex optimization problems

for f . We consider a generalization of the PGM and the CGM as follows. A composite-type
PGM is an iterative method whose iterations involve subproblems of the form

min
x∈Q

{⟨s, x⟩+ αd(x) + Ψ(x)}, s ∈ E∗, α > 0 (2.4.10)

while a composite-type CGM equips the subproblems

min
x∈Q

{⟨s, x⟩+ Ψ(x)}, s ∈ E∗. (2.4.11)

The smooth problems are included in this class with the case Ψ(x) ≡ 0. Another illus-
trative example is the so called Lasso regularization, i.e., f0(x) = ∥Ax+ b∥22 and Ψ(x) =
∥x∥1 =

∑n
i=1 |x(i)| (for x = (x(i))ni=1 ∈ E := Rn, A ∈ Rm×n, and b ∈ Rm), which arises

from image/signal processing, compressed sensing, statistics, and so on. The corresponding
subproblem (2.4.10) for PGMs in the Euclidean setting is easily solvable with the cost of
O(n). See [10] for examples of composite structure and the solvability of subproblems.

Mathematical fundamentals of the composite structure and the composite-type PGMs
were investigated by Fukushima and Mine [23] and also by Nesterov [53] without assuming
the convexity of f0(x).

Under the assumption f0(x) ∈ F1
L(Q), there are many composite-type PGMs for this

problem [7, 23, 53, 58, 59] and they provide the same iteration complexity as the optimal
one for the smooth problems in the non strongly convex case. Nesterov [53] further proposed
an optimal method for strongly convex composite problems in the Euclidean setting. The
PGMs [12, 15, 26] are also applicable to this problem ensuring the optimal complexity.

Nesterov’s universal gradient method [54] is a composite-type PGM for the case f0 ∈
Fν
M (Q) which ensures the same complexity as the optimal one for the weakly smooth problems

in the non strongly convex case.

The smoothing technique proposed by Nesterov [50] and its extension [9] by Beck and
Teboulle for a special form of Ψ(x) are also important because of their significant advantage
in efficiency, which have further consideration in the strongly convex case [51].

Composite-type CGMs were investigated in [1, 3, 24, 55]. A duality relationship to the
MDM were shown in [1, 3].

Mixed smoothness

Suppose that f(x) has the form

f(x) = φ(x) + ψ(x), φ(x) ∈ F1
L(Q), ψ(x) ∈ F0

M (Q). (2.4.12)

This class of convex functions covers the classes of the non-smooth and the smooth problems
with applications as the composite structure. Lan [34, 37] proposed PGMs for this class in
the non strongly convex case (with further stochastic settings). The works by Ghadimi and
Lan [25, 26] employed a more general assumption

f(y) ≤ f(x) + ⟨g(x), y − x⟩+ 1

2
L ∥x− y∥2 +M ∥x− y∥ , ∀x, y ∈ Q, (2.4.13)

where g(x) ∈ ∂f(x) is a subgradient mapping of f (In the original papers [25, 26], this class
was considered with the composite structure and a stochastic setting).
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Chapter 2 Basic Theory

In the Euclidean setting, it turns out that the iteration complexity of PGMs for the class
of convex functions satisfying (2.4.13) (or (2.4.12)) cannot be better than

O

(√
LR2

ε
+
M2R2

ε2

)
and O

(√
L

µ
log

1

ε
+
M2

µε

)

in the non strongly and strongly convex cases, respectively (again R := ∥x0 − x∗∥2). Optimal
PGMs were presented in [12, 25, 26, 34, 37].

Inexact oracle model

In the Euclidean setting ∥·∥ = ∥·∥2, suppose that f(x) is equipped with a first-order (δ, L, µ)-
oracle [17], i.e., for each y ∈ Q, we can compute (f̄(y), ḡ(y)) ∈ R× E∗ such that

µ

2
∥x− y∥22 ≤ f(x)− (f̄(y) + ⟨ḡ(y), x− y⟩) ≤ L

2
∥x− y∥22 + δ, ∀x ∈ Q, (2.4.14)

where δ ≥ 0 and L ≥ µ ≥ 0.
The inexact oracle model was firstly studied by Devolder et al. [18] with µ = 0 and they

proposed the classical and the fast (proximal) gradient methods which were extended to the
strongly convex case in [17]. A CGM for this model in the case µ = 0 was analyzed by [22].

The inexact oracle model can be applicable to situations when an oracle is computed by
an auxiliary optimization problem (e.g., saddle point problems, Augmented Lagrangians, and
Moreau-Yoshida regularization; see [18]). Another interesting application is an approximation
of the weakly smooth problems via the inexact oracle model. This enables to give an optimal
and a nearly optimal PGMs for the weakly smooth problems in the non strongly and the
strongly convex cases, respectively [17, 18].
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Chapter 3

Subgradient-Based Methods for Convex

Optimization Problems

In this chapter, we review particular existing subgradient-based methods for convex opti-
mization problems and discuss their iteration complexities. Many of these methods will be
unified in the framework investigated in Chapter 4.

We review details of existing methods for which we have particular interest to compare
with the contribution of this thesis. See Section 2.4 for more general backgrounds.

Section 3.1 focuses on the non-smooth problems. We in particular review the mirror-
descent method (Section 3.1.1) and the dual-averaging method (Section 3.1.2). Section 3.2
reviews PGMs for the smooth or further structured problems. Staring from the so called
classical PGM in Section 3.2.1, we deal with their accelerated methods in Section 3.2.2. We
finally focus on existing CGMs in Section 3.2.3.

3.1 Proximal subgradient methods for non-smooth problems

For a closed convex set Q ⊂ E, consider the non-smooth problem

min
x∈Q

f(x)

where f(x) is a subdifferentiable convex function on Q. We assume that there exists an
optimal solution x∗ ∈ Argminx∈Q f(x).

In this section, we review two important (optimal) PGMs, the mirror-descent and the
dual-averaging methods. We assume that we have a subgradient mapping g : Q → E∗,
g(x) ∈ ∂f(x) and a prox-function d(x) on Q. We denote the Bregman distance associated
with d as

ξ(y, x) := d(x)− d(y)− ⟨∇d(y), x− y⟩ .

3.1.1 Mirror-descent method

The Mirror-Descent Method (MDM) is a PGM proposed by Nemirovski and Yudin [46] and
reinterpreted by Beck and Teboulle [6] in the form as follow: Generate {xk}k≥0 ⊂ Q by
x0 := argminx∈Q d(x) and the iteration

gk := g(xk) ∈ ∂f(xk)
zk := argminx∈Q{λk[f(xk) + ⟨gk, x− xk⟩] + ξ(xk, x)}

xk+1 := zk

(3.1.1)
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Chapter 3 Subgradient-Based Methods for Convex Optimization Problems

for each k ≥ 0, where λk > 0 is a weight parameter. The notation zk is redundant here,
but it is important to connect with our unifying framework developed in Chapter 4. Notice
that, by the definition of the Bregman distance, the computation of zk reduces to the form
of (2.3.1) so that it is a PGM.

The parameter λk is also referred to as a stepsize; the MDM in the Euclidean setting ∥·∥ =
∥·∥2, d(x) := 1

2 ∥x− x0∥22 yields the projected subgradient method xk+1 := πQ(xk − λkgk)
in view of (2.3.2) (see also Auslender-Teboulle [2] and Fukushima-Mine [23] for some related
works).

The MDM produces the following estimate [6]:

∀k ≥ 0, ∆k :=

∑k
i=0 λif(xi)∑k

i=0 λi
− f(x∗) ≤

ξ(x0, x
∗) + 1

2σd

∑k
i=0 λ

2
i ∥gi∥

2
∗∑k

i=0 λi
. (3.1.2)

It is important to note that, by the convexity of f , the quantity ∆k provides an approximate
solution

x̂k :=

∑k
i=0 λixi∑k
i=0 λi

(3.1.3)

yielding the estimate f(x̂k)− f(x∗) ≤ ∆k. We can also obtain the estimate min0≤i≤k f(xi)−
f(x∗) ≤ ∆k. Therefore, let us focus on the right hand side of (3.1.2).

Suppose that M := sup{∥g∥∗ : g ∈ ∂f(x), x ∈ Q} is finite and we know an upper bound

R ≥
√

1
σd
ξ(x0, x∗). Then, the inequality (3.1.2) yields ∆k ≤

√
2MR/

√
k + 1 if we choose the

constant weight parameters

λ0 = λ1 = · · · = λk :=

√
2σdR

M
√
k + 1

(3.1.4)

for a fixed k ≥ 0. In this case, the MDM ensures an ε-solution with at most O(M2R2/ε2)
iterations which provides the optimal complexity for the non-smooth case.

The above choice (3.1.4) of weight parameters, however, is impractical since it depends
on the final iterate k and an upper bound for

√
ξ(x0, x∗)/σd. A more practical choice λi :=

γ/
√
i+ 1 for some r > 0 only ensures an upper bound

ξ(x0, x
∗) + (2σd)

−1γ2M2(1 + log(k + 1))

2γ(
√
k + 2− 1)

= O(log k/
√
k)

for the right hand side of (3.1.2). It is important to note that, however, when the feasible
set Q is compact, the weight parameters λi := γ/

√
i+ 1 (γ > 0) ensure the convergence

f(x̃k)−f(x∗) ≤ O(1/
√
k) for special weighted averages x̃k of x0, . . . , xk [43, 44]. For instance,

with the Nedić-Lee’s averaging [43, eq. (17)]

x̃k :=
1∑k

i=0 λ
−1
i

k∑
i=0

λ−1
i xi, (3.1.5)

the MDM with the weight parameters λi := γ/
√
i+ 1 (γ > 0) ensures the estimate

f(x̃k)− f(x∗) ≤

(
D2

ξ

γ
+
γM2

σd

)
3

2
√
k + 1

for all k ≥ 0, where D2
ξ := supx,y∈Q ξ(x, y) [43, Corollary 2]. The choice γ := Dξ

√
σd/M

leads this upper bound to its minimum 3
2
√
σd

MDξ√
k+1

(with respect to γ).
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3.1 Proximal subgradient methods for non-smooth problems

The MDM for strongly convex case

The MDM also attains the optimal iteration complexity in the strongly convex case. Let
us further assume that we know a convexity parameter σf > 0 of f(x) on Q and that the
quadratic growth condition ξ(y, x) ≤ 1

2 ∥x− y∥2 , ∀x, y ∈ Q holds. Then, [43, Lemma 3]
shows that the Nedić-Lee’s averaging (3.1.5) of the MDM with weight parameters {λk}k≥0

satisfying

λk =
αk

σf
, α0 = 1, αk ∈ (0, 1],

1− αk+1

α2
k+1

≤ 1

α2
k

, ∀k ≥ 0

ensures the estimate

f(x̃k)− f(x∗) ≤ (k + 1)α2
k

M2

2σfσd
, ∀k ≥ 0. (3.1.6)

For instance, the choice λk := 1
σf tk

where t0 := 1, tk+1 :=
1+
√

1+4t2k
2 (k ≥ 0) leads the estimate

(3.1.6) to

f(x̃k)− f(x∗) ≤ 2M2

σdσf (k + 1)
, ∥x̃k − x∗∥2 ≤ 4M2

σdσ
2
f (k + 1)

, (3.1.7)

for all k ≥ 0. Therefore, the MDM guarantees the optimal iteration complexityO(M2/(σdσfε))
in the strongly convex case (see also [42, Proposition 2.8] for a related result). Bach also an-
alyzed the choice λk = 2

σf (k+2) of the MDM for a special form of strongly convex objective

function [3, Proposition 3.1]. He proved almost the same estimate as (3.1.7) for the approxi-
mate solution

x̃k :=
2

(k + 1)(k + 2)

k∑
i=0

(i+ 1)xi (3.1.8)

which is slightly different from the Nedić-Lee’s averaging 2
(k+2)(k+3)

∑k
i=0(i+ 2)xi (3.1.5).

3.1.2 Dual-averaging method and its variants

The Dual-Averaging Method (DAM) proposed by Nesterov [52] is an optimal PGM which
overcomes the dependence of weight parameters of the MDM on the iteration counter k and
achieves the rate of convergence O(1/

√
k) even if Q is unbounded. This method employs a

non-decreasing sequence of positive numbers {βk}k≥−1 (βk+1 ≥ βk > 0), the scaling parame-
ters, in addition to the weight parameters {λk}k≥0.

From the initial point x0 := argminx∈Q d(x) ∈ Q, the DAM is performed by the iteration

gk := g(xk) ∈ ∂f(xk)

zk := argminx∈Q

{∑k
i=0 λi[f(xi) + ⟨gi, x− xi⟩] + βkd(x)

}
xk+1 := zk

(3.1.9)

for each k ≥ 0.

It is important to note that the difference between the MDM and the DAM is the con-
struction of the subproblems. They solves subproblems of the form zk := argminx∈Q φk(x)
defining auxiliary functions in their methods, namely, φk(x) is defined by

φk(x) := λk(f(xk) + ⟨gk, x− xk⟩) + ξ(xk, x) (3.1.10)
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in the MDM and

φk(x) :=

k∑
i=0

λi(f(xi) + ⟨gi, x− xi⟩) + βkd(x) (3.1.11)

in the DAM, where gk := g(xk) ∈ ∂f(xk).

Nesterov proved that the following general estimate for the DAM (set D = d(x∗) in [52,
Theorem 1 and (3.2)]):

∀k ≥ 0, ∆k :=

∑k
i=0 λif(xi)∑k

i=0 λi
− f(x∗) ≤

βkd(x
∗) + 1

2σd

∑k
i=0

λ2
i

βi−1
∥gi∥2∗∑k

i=0 λi
(3.1.12)

In order to ensure the rate O(1/
√
k) of convergence, we do not even need a prior knowledge

of an upper bound for
√
ξ(x0, x∗)/σd in contrast to the MDM; for instance, choosing λk := 1

and βk := γβ̂k where γ > 0 and

β̂−1 := β̂0 := 1, β̂k+1 := β̂k + β̂−1
k , ∀k ≥ 0, (3.1.13)

the estimate (3.1.12) yields

∀k ≥ 0, ∆k ≤
(
γd(x∗) +

M2

2σdγ

)
0.5 +

√
2k + 1

k + 1
.

If we further know R ≥
√

1
σd
d(x∗), the choice γ := M√

2σdR
yields ∆k ≤ MR√

2
0.5+

√
2k+1

k+1 achieving

the optimal iteration complexity O(M2R2/ε2) to obtain an ε-solution.

Nesterov and Shikhman [56] further proposed variants of the DAM, the double and triple
averaging methods, in order to obtain convergence results for the sequence {xk}. The double
averaging method [56, eq. (28)] iterates starting from x0 := argminx∈Q d(x) ∈ Q as follows:

zk := argmin
x∈Q

φk(x), xk+1 := (1− τk)xk + τkzk, k = 0, 1, 2, . . . (3.1.14)

where τk := λk+1/
∑k+1

i=0 λi and φk(x) is defined by the auxiliary function (3.1.11) used in
the DAM. This method bounds the difference f(xk) − f(x∗) by the same value as the right
hand side of (3.1.12) [56, Theorem 3.1] for all k ≥ 0. Hence, it achieves the optimality. The
triple averaging, which is a modification of (3.1.14), allows further flexibility on the choices
for {λk} and {βk} [56, Theorem 3.3].

Now, suppose that the objective function f(x) is strongly convex with constant σf > 0
on Q. Juditsky and Nesterov [33] proposed a multistage procedure (or restarting technique)
of the DAM which can be applied to this case (The original method is further applicable to
uniformly convex functions, a generalization of strongly convex ones). This procedure ensures
the optimal iteration complexity O(M2/(σdσfε)) in the strongly convex case using the prior
knowledge of M , σf , and R ≥ ∥x0 − x∗∥.

3.2 Gradient-based methods for smooth/structured problems

In this section, we review gradient-based methods for smooth problems or further structured
ones (namely, weakly smooth problems, composite structure, and inexact oracle model). Let

24



3.2 Gradient-based methods for smooth/structured problems

us consider a closed convex set Q ⊂ E equipped with a prox-function d(x). We consider
gradient-based methods for the convex optimization problem

min
x∈Q

f(x)

where f(x) is a lsc convex function on Q. Additional assumptions ((weak) smoothness,
composite structure, and so on) will be specified corresponding to each method.

3.2.1 Classical proximal gradient methods

Let us begin by the most basic gradient method, the steepest descent method in the Euclidean
setting (∥·∥ = ∥·∥2): For an unconstrained minimization minx∈Rn f(x), f ∈ F1

L(Rn), start

from x0 ∈ Rn and iterate xk+1 := xk − λk
L ∇f(xk). Since xk+1 = x0 − 1

L

∑k
i=0 λi∇f(xi), it

can be rewritten into two ways:

xk+1 := argmin
x∈Rn

{
λk[f(xk) + ⟨∇f(xk), x− xk⟩] +

L

2
∥x− xk∥22

}
= argmin

x∈Rn

{
k∑

i=0

λi[f(xi) + ⟨∇f(xi), x− xi⟩] +
L

2
∥x− x0∥22

}
.

Notice that the first and the second expressions of xk+1 are the iterations of the MDM (3.1.1)
and the DAM (3.1.9) (with replacing λk by λk/L and letting βk ≡ 1), respectively.

The steepest descent method were extensively considered with a composite structure or
an inexact oracle model as explained below.

Primal and dual gradient methods for composite problems

Consider the composite structure (2.4.9), namely, f(x) := f0(x)+Ψ(x) where f ∈ F1
L(Q) and

Ψ(x) is a lsc convex function on Q. Nesterov [53] proposed the following (composite-type)
PGMs, the primal and the dual gradient methods (for known Lipschitz constant L), in the
Euclidean setting: Start from x0 ∈ Q and generate {xk}k≥0 by

primal gradient method : xk+1 := argmin
x∈Q

{
f0(xk) + ⟨∇f0(xk), x− xk⟩+

L

2
∥x− xk∥22 + Ψ(x)

}
(3.2.1)

or by

dual gradient method : xk+1 := argmin
x∈Q

{
k∑

i=0

[f0(xi) + ⟨∇f0(xi), x− xi⟩+ Ψ(x)] +
L

2
∥x− x0∥22

}
.

(3.2.2)
These updates do not involve weight parameter λk while the original methods involve the λk
if we employ a line-search procedure to estimate an (unknown) Lipschitz constant L.

Remark 3.2.1. In the original (primal) gradient method (3.3) in [53], replacing (yk,Mk, Lk)
by (xk, L, L) yields the above description of the primal gradient method. Similarly, the dual
one is obtained by replacing (vk,Mk, Lk) of (4.4) by (xk, L, L). Moreover, the notation yk in
(4.4) is referred to as wk below.

□
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Nesterov showed the following estimate of the dual gradient method (One can take γu → 1
in [53, eq. (4.8)]):

min
0≤i≤k

f(wi)− f(x∗) ≤
L ∥x0 − x∗∥22
2(k + 1)

(3.2.3)

for all k ≥ 0, where wk := argminx∈Q

{
f0(xk) + ⟨∇f0(xk), x− xk⟩+ L

2 ∥x− xk∥22 + Ψ(x)
}
.

The primal gradient method were analyzed by Beck and Teboulle [7, 8] in the case when
Q = Rn and Ψ is subdifferentiable on domΨ . In this case, the primal gradient method
generates {xk}k≥0 satisfying

f(xk+1)− f(x∗) ≤
L ∥x0 − x∗∥22
2(k + 1)

for all k ≥ 0 [8, Theorem 1.1]. Note that the primal gradient method generates the test
points {xk} such that f(xk+1) ≤ f(xk) due to Proposition 2.1.6. Therefore, using the same

notation wk := argminx∈Q

{
f0(xk) + ⟨∇f0(xk), x− xk⟩+ L

2 ∥x− xk∥22 + Ψ(x)
}

(= xk+1) as

above, we see that both the primal and the dual gradient methods admit the estimate (3.2.3).
Nesterov showed the following linear convergence of the primal gradient method in the

strongly convex case (Again, take γu → 1 in [53, Theorem 5]). Suppose that f(x) is strongly
convex with constant σf > 0 on Q. Then the sequence {xk}k≥0 generated by the primal
gradient method satisfies

f(xk)− f(x∗) ≤


(

L
σf

)k
(f(x0)− f(x∗)) : L/σf ≤ 1/2,(

1− σf

4L

)k
(f(x0)− f(x∗)) : otherwise,

(3.2.4)

for all k ≥ 0. It is important to note that we do not need to know σf > 0 in the primal
gradient method to ensure this result. The linear convergence of the dual gradient method
was firstly shown by Devolder et al. [18] for the inexact oracle model, which we discuss next.

Primal and dual gradient methods with inexact oracle model

In the Euclidean setting, let us consider the inexact oracle model, i.e., suppose that we can
compute (f̄(y), ḡ(y)) ∈ R×E∗ satisfying oracle inexactness (2.4.14) for parameters L ≥ µ ≥ 0,
δ ≥ 0. Devolder et al. [17] analyzed the primal and the dual gradient method in this setting.
Starting from x0 ∈ Q, they are described as

xk+1 := argmin
x∈Q

{
f̄(xk) + ⟨ḡ(xk), x− xk⟩+

L

2
∥x− xk∥22

}
(3.2.5)

for the primal gradient method and

xk+1 := argmin
x∈Q

{
k∑

i=0

λi[f̄(xi) + ⟨∇ḡ(xi), x− xi⟩+
µ

2
∥x− xk∥22] +

L

2
∥x− x0∥22

}
(3.2.6)

for the dual gradient method where {λk} is a sequence of weight parameters.
The primal gradient method admits the following convergence result (see [18, Theorem 2]

and the proof of [17, Theorem 4]):

min
0≤i≤k+1

f(xi)− f(x∗) ≤
L ∥x0 − x∗∥22

2
min

{(
1− µ

L

)k
,

1

k + 1

}
+ δ. (3.2.7)
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The dual gradient method with

λ0 :=
L

L− µ
, λk+1 :=

L+ µSk
L− µ

(3.2.8)

also satisfies this estimate replacing the left hand side by min0≤i≤k f(wi) − f(x∗), where
wk := argminx∈Q

{
f̄(xk) + ⟨ḡ(xk), x− xk⟩ + L

2 ∥x− xk∥22
}
[17, Theorem 5 and Remark 7].

Notice that this choice of weight parameters in the case µ = 0 becomes λk ≡ 1.
Remark that the right hand side of the estimate (3.2.7) tends to δ as k → ∞. In particular,

whenever δ < ε, we ensure an ε-solution with the iteration complexity

min

{
Θ

(
LR2

ε− δ

)
,Θ

(
L

µ
log

LR2

ε− δ

)}
where R := ∥x0 − x∗∥2. This complexity with δ = 0 gives a well-known one of the steepest
descent method or the projected gradient method for the class F1

L(Q). Comparing with the
lower bounds for the smooth problems (2.4.4), we see that the primal and the dual gradient
methods does not ensure the optimal complexity.

3.2.2 Fast proximal gradient methods

Now we review PGMs, so called fast or accelerated PGMs, ensuring much better iteration
complexity than the classical ones. In particular, they guarantees the optimal iteration
complexity for the smooth problems.

For the smooth problems, we review three fast PGMs, the Nesterov’s modified method
[50] and the Tseng second/third accelerated proximal gradient methods [58, 59]. They are
optimal in the non strongly convex case. We generalize the three methods in our unifying
framework later.

We further review two fast PGMs, the Nesterov’s accelerated method [53] for composite
structure and the fast gradient method [17, 18] for inexact oracle model. They ensure the
optimal iteration complexity for the smooth problems even in the strongly convex case.

Fast PGMs for smooth problems

Suppose that the objective function f(x) belongs to the class F1
L(Q). The first optimal com-

plexity PGM in this case was proposed by Nesterov [47] and many variants or extensions were
investigated (refer Section 2.4). Here we recall the modified method (with particular choice
of the weight parameters λk) proposed in [50, Section 5.3]:

Nesterov’s modified method [50]: Set λk := (k+1)/2 for k ≥ 0 and x0 := z−1 := argminx∈Q d(x).

Compute the solution w0 := argminx∈Q{λ0[f(x0) + ⟨∇f(x0), x− x0⟩] + L
σd
d(x)} and set

x̂0 := z0 := w0. For k ≥ 0, iterate the following procedure:

Set xk+1 := (1− τk)x̂k + τkzk, where τk :=
λk+1∑k+1
i=0 λi

,

Compute wk+1 := argminx∈Q

{
λk+1[f(xk+1) + ⟨∇f(xk+1), x− xk+1⟩] + L

σ ξ(zk, x)
}
,

Set x̂k+1 := (1− τk)x̂k + τkwk+1,

Compute zk+1 := argminx∈Q

{∑k+1
i=0 λi[f(xi) + ⟨∇f(xi), x− xi⟩] + L

σd
d(x)

}
.

(3.2.9)
In comparison, the Tseng’s second and third Accelerated Proximal Gradient (APG) meth-

ods [59], which are particular cases of algorithms 1 and 3 in [58], only require the computation
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of either zk or wk of the Nesterov’s method, respectively.

Tseng’s second APG method [59]: Set λ0 := 1, λk+1 :=
1+
√

1+4λ2
k

2 for k ≥ 0, and x0 := z−1 :=
argminx∈Q d(x). Compute the solution z0 := argminx∈Q{λ0[f(x0) + ⟨∇f(x0), x− x0⟩] +
L
σd
ξ(x0, x)} and set x̂0 := z0. For k ≥ 0, iterate the following procedure:

Set xk+1 := (1− τk)x̂k + τkzk, where τk :=
λk+1∑k+1
i=0 λi

,

Compute zk+1 := argminx∈Q

{
λk+1[f(xk+1) + ⟨∇f(xk+1), x− xk+1⟩] + L

σd
ξ(zk, x)

}
,

Set x̂k+1 := (1− τk)x̂k + τkzk+1.
(3.2.10)

Tseng’s third APG method [59]: Set λ0 := 1, λk+1 :=
1+
√

1+4λ2
k

2 for k ≥ 0, and x0 := z−1 :=
argminx∈Q d(x). Compute the solution z0 := argminx∈Q{λ0[f(x0) + ⟨∇f(x0), x− x0⟩] +
L
σd
d(x)} and set x̂0 := z0. For k ≥ 0, iterate the following procedure:

Set xk+1 := (1− τk)x̂k + τkzk, where τk :=
λk+1∑k+1
i=0 λi

,

Compute zk+1 := argminx∈Q

{∑k+1
i=0 λi[f(xi) + ⟨∇f(xi), x− xi⟩] + L

σd
d(x)

}
,

Set x̂k+1 := (1− τk)x̂k + τkzk+1.

(3.2.11)

Remark 3.2.2. To see the equivalence to the Tseng’s second APG method, notice that x0
is not used at all in [59]. Then defining d(x) := D(x, z0) = η(x)− η(z0)−⟨∇η(z0), x− z0⟩ for
an arbitrary z0 ∈ Q, we have σd = 1 in (a). Finally, making the correspondence zk → zk−1,
yk → xk, xk → x̂k, and θk → 1

λk
, it will result in our notation. For the Tseng’s third

APG method, identical observations are valid, excepting that we define d(x) := η(x)− η(z0)
instead. □
Remark 3.2.3. Tseng’s APG methods were originally proposed for the composite problem
minx∈domΨ [f(x) ≡ f0(x) + Ψ(x)] where f0 ∈ F1

L(domΨ) and Ψ(x) is a lsc convex function
with closed domain. The above description is obtained by letting Ψ the indicator function of
Q. □

Similar to the comparison of the MDM and the DAM, the difference among the above
three methods is basically the subproblems at each iteration. These subproblems has the
form zk := argminx∈Q φk(x) with the auxiliary functions

φk(x) := λk[f(xk) + ⟨∇f(xk), x− xk⟩] +
L

σd
ξ(zk−1, x) (3.2.12)

for the Tseng’s second APG method and

φk(x) :=
k∑

i=0

λi[f(xi) + ⟨∇f(xi), x− xi⟩] +
L

σd
d(x) (3.2.13)

for the Tseng’s third APG method; the Nesterov’s method can be seen as their hybrid. Notice
that the auxiliary functions (3.2.12) and (3.2.13) correspond to the one of the MDM (3.1.10)
except the factor L/σd, and the one of the DAM (3.1.11) with βk ≡ L/σd, respectively.

It can be shown that the Nesterov’s and the Tseng’s methods attain the optimal iteration
complexity for smooth problems in the non strongly convex case. The Nesterov’s method
(3.2.9) and the Tseng’s third APG method (3.2.11) satisfy

∀k ≥ 0, f(x̂k)− f(x∗) ≤ 4Ld(x∗)

σd(k + 1)(k + 2)
(3.2.14)
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while the Tseng’s second APG method (3.2.10) satisfies

∀k ≥ 0, f(x̂k)− f(x∗) ≤ 4Lξ(x0, x
∗)

σd(k + 2)2
(3.2.15)

(see [50, Theorem 2] and [58, Corollaries 1,3]). Therefore, they ensure an ε-solution with the
optimal iteration complexity O(

√
LR2/ε) where R =

√
d(x∗)/σd for the first estimate and

R =
√
ξ(x0, x∗)/σd for the second one, respectively.

In the Euclidean setting d(x) = 1
2 ∥x− x0∥22, we can apply a multistage procedure [47, 53]

to the above methods to achieve the optimal complexity in the strongly convex case if we
know a convexity parameter σf > 0 of f on Q. Indeed, since the above estimates have

the form f(x̂k) − f(x∗) ≤ cL∥x0−x∗∥22
2k2

for some c > 0, after k ≥
√

2cL/σf iterations, we

have f(x̂k) − f(x∗) ≤ σf

4 ∥x0 − x∗∥22 ≤ 1
2(f(x0) − f(x∗)) by the strong convexity of f and

the optimality of x∗. Then, one can restart the method setting x̂k as the new initial point,

which ensures an ε-solution repeating
⌈
log2

f(x0)−f(x∗)
ε

⌉
times of restarting; the total iteration

complexity O
(√

L
σf

log 1
ε

)
is optimal for the smooth problems.

One can also apply PGMs introduced next which ensures the optimal complexity without
multistage procedure. Note that the optimality of the above Nesterov’s and Tseng’s methods
without a multistage procedure in the strongly convex case is not known.

Fast PGMs for convex optimization problems with composite structure

Consider a convex optimization problems with a composite structure: minx∈Q[f(x) ≡ f0(x)+
Ψ(x)] where f0 ∈ F1

L(Q) and Ψ(x) is a lsc convex function on Q. Tseng’s second and
third APG methods [58, 59] were originally proposed for this case which can be described
by replacing the first-order approximation f(xi) + ⟨∇f(xi), x− xi⟩ by its composite version
f0(xi) + ⟨∇f0(xi), x− xi⟩+ Ψ(x) in the subproblems in (3.2.10) and (3.2.11), preserving the
efficiency estimates (3.2.15) and (3.2.14), respectively.

In the Euclidean setting d(x) := 1
2 ∥x− x0∥22, Nesterov’s accelerated method [53] further

ensures a linear convergence in the strongly convex case. When we know the Lipschitz
constant L and a convexity parameter σΨ of Ψ(x) on Q, the Nesterov’s accelerated method
equips two subproblems at each iteration (collaborating the ones of the primal and the dual
PGMs in Section 3.2.1) and generates points {x̂k}k≥0 ⊂ Q satisfying the following estimate
(let γu → 1 in [53, Theorem 6]):

∀k ≥ 1, f(x̂k)− f(x∗) ≤
L ∥x0 − x∗∥22

4
min

{
4

k2
,

(
1 +

√
σΨ
2L

)−2(k−1)
}
. (3.2.16)

We remark that the Nesterov’s accelerated method does not involve a multistage procedure.

In the case when we further know a convexity parameter σf0 of f0(x) on Q, one can
improve the estimate (3.2.16) by reallocating the function Ψ(x) as we briefly explain here
(see [53, Section 5]). In fact, we can rewrite the objective function as f(x) = g0(x) + Φ(x)
where

g0(x) := f0(x)−
σf0
2

∥x− x0∥22 , Φ(x) := Ψ(x) +
σf0
2

∥x− x0∥22 .

The convexity parameter of Φ(x) is σf0 + σΨ and the Lipschitz constant of ∇g0(x) on Q is
L − σf0 where L is the one of f0(x). Therefore, the Nesterov’s accelerated method for this
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reallocation leads the above estimate (3.2.16) to

∀k ≥ 1, f(x̂k)− f(x∗) ≤
(L− σf0) ∥x0 − x∗∥22

4
min

{
4

k2
,

(
1 +

√
σf

2(L− σf0)

)−2(k−1)
}

(3.2.17)
where we denote σf := σf0 + σΨ .

Fast PGMs for convex optimization problems with inexact oracle model

Consider a convex optimization problem minx∈Q f(x) equipped with a (δ, L, µ) oracle (2.4.14).
Similar to the Nesterov’s accelerated method, Devolder et al. proposed the fast gradient
method [17, Algorithm 3] collaborating the primal and the dual methods for this case. The
fast gradient method generates {x̂k}k≥0 ⊂ Q ensuring the following estimate [17, Theorem 7]:

∀k ≥ 1, f(x̂k)− f(x∗) ≤
L ∥x0 − x∗∥22

2
min

{
4

k2
,

(
1 +

1

2

√
µ

L

)−2k
}

+ Ek (3.2.18)

where Ek = Θ
(
δ ·min{k,

√
L/µ}

)
. Due to the error term Ek, ensuring an ε-solution and

the iteration complexity depend on the parameters L, µ, δ. One can see further discussions
in [17, Sections 5.3, 5.4] and [18, Section 5.2].

3.2.3 Conditional gradient methods

We finally discuss on the CGMs for some structured problems.

Suppose that Q is bounded and the objective function f(x) is differentiable on Q. The
CGM proposed by Frank and Wolfe [21], which we refer to as the classical CGM, is the most
basic one: Start from x0 ∈ Q and, for each k ≥ 0, iterate

zk ∈ Argmin
x∈Q

[f(xk) + ⟨∇f(xk), x− xk⟩], xk+1 := (1− τk)xk + τkzk (3.2.19)

where τk ∈ [0, 1]. A popular choice τk := 2
k+2 ensures the following estimate when f ∈ F1

L(Q)

[22, Bound 3.1]1:

∀k ≥ 1, f(xk+1)− f(x∗) ≤ 2LDiam(Q)2

k + 4
. (3.2.20)

In the weakly smooth case f ∈ Fρ−1
M (Q) (ρ ∈ (1, 2]), the same choice τk := 2/(k+2) ensures an

estimate f(xk)− f(x∗) ≤ O(MDiam(Q)ρ/kρ−1) (see [55]). The same convergence rate holds
for a composite-type CGM extending the classical CGM to composite structured problems
[1, 3, 55].

The classical CGM for the inexact oracle model was analyzed by Freund and Grigas (see
[22, Section 5.2.1]). If the objective function f is equipped with a (δ, L, 0)-oracle (f̄ , ḡ), then
the classical CGM with τk = 2/(k + 2) replacing (f,∇f) by (f̄ , ḡ) satisfies f(xk) − f∗ ≤
O(LDiam(Q)2/k) +O(δk).

There are some variants [35, 55] of the classical CGM. In particular, Nesterov [55] demon-
strated the iteration complexity (2.4.8) for the weakly smooth problems. Here we describe
particular instances of Lan’s variants [35] for the smooth problems which are discussed in the

1Replace (h(·), λk, λ̃k, ᾱk) in [22] by (−f(·), xk, zk, τk).
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unifying framework in Chapter 4. The primal averaging CGM [35, Algorithm 4] with αk =
2/(k+1) is described as follow: Initializing x0 := z−1 ∈ Q, x̂0 := z0 ∈ Argminx∈Q ⟨∇f(x0), x⟩,
iterate the following procedure

xk+1 :=
k + 1

k + 3
x̂k +

2

k + 3
zk,

zk+1 ∈ Argmin
x∈Q

⟨∇f(xk+1), x⟩ ,

x̂k+1 :=
k + 1

k + 3
x̂k +

2

k + 3
zk+1,

(3.2.21)

for each k ≥ 0. Lan also proposed another variant, the primal dual averaging CGM, where
we give its particularization by αk = 2/(k + 1), θk = k in [35, Algorithm 5] here: Initialize
x0 := z−1 ∈ Q, x̂0 := z0 ∈ Argminx∈Q ⟨∇f(x0), x⟩ and iterate

xk+1 :=
k + 1

k + 3
x̂k +

2

k + 3
zk,

zk+1 ∈ Argmin
x∈Q

⟨
k+1∑
i=0

(i+ 1)∇f(xi), x

⟩
,

x̂k+1 :=
k + 1

k + 3
x̂k +

2

k + 3
zk+1

(3.2.22)

for each k ≥ 0. These two CGMs satisfy the following convergence rate [35, Theorems 7,8].

∀k ≥ 0, f(x̂k)− f(x∗) ≤ 2LDiam(Q)2

k + 2
. (3.2.23)
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Chapter 4

A Unifying Framework of Subgradient-Based

Methods for Structured Convex Optimization

Problems

4.1 Overview

In this chapter, we establish a methodology of generating optimal or nearly optimal com-
plexity subgradient-based methods for several classes of convex optimization problems. After
some preliminaries in Section 4.2, the core notion of the thesis will be introduced in Sec-
tion 4.3. The remaining sections demonstrate how our notion works as a unifying framework.

We at first introduce two classes of convex optimization problems, the non-smooth and
the structured problems. The former was already introduced while the latter is a large class
of problems including the (weakly) smooth problems, the mixed smoothness structure, the
composite structure, and the inexact oracle model. We additionally consider the ‘strong
convexity’ with respect to the prox-function, generalizing the one in the Euclidean setting.

The unifying framework is introduced in Section 4.3. Recall, for instance, that both
the MDM and the DAM solves subproblems zk := argminx∈Q φk(x) where φk(x) is defined
by (3.1.10) and (3.1.11), respectively. In order to discuss them in a unified way, we define
Properties A (and B) as axioms for the auxiliary functions {φk(x)} necessary to develop
efficient subgradient-based methods. Based on these properties, we then propose two general
methods, Methods I and II, of solving the non-smooth and the structured problems, respec-
tively. We totally propose four kinds of methods since both Methods I and II consist of the
classical and the modified methods which sometimes have different rates of convergence. We
demonstrate in Section 4.3.4 that particular instances of the proposed methods yield existing
subgradient-based methods reviewed in Chapter 3.

The remaining sections correspond to unified analysis of subgradient-based methods. We
develop general convergence estimates in Section 4.4. The development here exploits the
Nesterov’s approach [50] using the relation (Rk). We then particularize our general estimate
to the non-smooth problems (Section 4.5), the smooth/composite problems as well as the
inexact oracle model (Section 4.6), and the weakly smooth problems (Section 4.7). We
compare our results with known ones reviewed in Chapter 3. We summarize remarkable
results below.

• Results for the non-smooth problems (non strongly convex case).
Theorem 4.5.1 shows that Method I ensures the optimal iteration complexity for the
non-smooth problems with the same advantage as the Nesterov’s DAM. As a byprod-
uct, the extended MDM proposed in Method 4.3.5 does not require the boundedness
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assumption of the feasible set to attain the optimality in contrast to the existing aver-
aging techniques for the original MDM.

• Results for the non-smooth problems (strongly convex case).
We show an optimal convergence result of Method I in Section 4.5.2. It recovers the
optimality of the MDM for the Nedić-Lee’s averaging (3.1.5) and the Bach’s variant
(3.1.8). Moreover, a new extension of the DAM to the strongly convex case is obtained.

• Results for the inexact oracle model and the composite problems.
In Section 4.6, we analyze Method II and show the so called classical convergence rate
(for the smooth problems) of the classical method and the optimal convergence of the
modified method. For particular cases, we obtain the same convergence results as the
known ones where some of them have slight improvements. In particular, we obtain
extensions of the Tseng’s APG methods and the Nesterov’s modified method to the
strongly convex case ensuring the optimal iteration complexity.

• Results for the weakly smooth problems and the mixed smoothness structure.
In Section 4.7 we analyze the modified methods of Method II for a class of problems
including the weakly smooth problems and the mixed smoothness structure. In par-
ticular, we obtain the optimal iteration complexity for the weakly smooth problems.
We ensure the optimality in the strongly convex case with less prior requirements com-
pared with the existing method, while the result in the non strongly convex case may
be restrictive because it does not ‘adapt’ the Hölder condition.

Nearly optimal iteration complexity for CGMs is also obtained in the non strongly
convex case.

4.1.1 Notations and settings

Here we collect common notations in this chapter.

Let E be a finite dimensional real vector space equipped with a norm ∥·∥.
Throughout this chapter, we fix a prox-function d(x) on Q, that is,

• d : E → R∪ {+∞} is a differentiable and strongly convex function on Q with constant
σd > 0,

• d(x) ≥ 0,∀x ∈ Q and d(x0) = 0 for x0 := argminx∈Q d(x).

As we fixed the prox-function, we simply denote the associated Bregman distance as

ξ(y, x) := Dd(y, x) = d(x)− d(y)− ⟨∇d(y), x− y⟩ .

Consider the following convex optimization problem:

min
x∈Q

f(x) (4.1.1)

where Q is a closed convex subset of E and f is a lsc convex function on E. We introduce
additional assumptions on this problem in the next section. We mainly focus, in particular, on
the problem (4.1.1) in two categories, the non-smooth and the structured problems introduced
in Section 4.2.2.
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4.2 Non-smooth and structured convex problems

In this section, we introduce two kinds convex problems, the non-smooth and the struc-
tured ones, which we apply our methodology to obtain efficient subgradient-based methods.
These convex problems cover several classes of known convex problems as clarified later (see
Example 4.2.8).

We firstly prepare the notion of a generalization of the strong convexity in the Euclidean
setting in Section 4.2.1 which is used to define the non-smooth and the structured problems
in Section 4.2.2.

4.2.1 Strong convexity with respect to prox-function

Development of subgradient methods for convex problems with strongly convex objective
functions often assume the Euclidean setting or the quadratic growth condition (2.1.13) for
ξ(y, x). We consider the following notion of strong convexity to handle the both cases.

Definition 4.2.1 (strong convexity with respect to prox-function). Let φ : E → R ∪ {+∞}
be a lsc convex function with Q ⊂ domφ. For a nonnegative constant σ, we say φ is σ-
strongly convex with respect to the prox-function d on Q if φ− σd is convex on Q. Then we
call σ a convexity parameter of φ with respect to d on Q. The set of the convexity parameters
is written by σ(φ), namely,

σ(φ) := {σ ≥ 0 | φ− σd is convex on Q}. (4.2.1)

Remark that we omitted the dependence to the prox-function d and the feasible set Q
from the notation σ(φ) for simplicity. This notion is also discussed in [41] when φ(x) is
differentiable on Q.

When E is a Euclidean space and ∥·∥2 is the norm induced by the inner product on E, the
strong convexity with respect to the norm ∥·∥2 is equivalent to the one with respect to the
prox-function d(x) := 1

2 ∥x∥
2
2. This fact is a particular one of the following characterization.

Proposition 4.2.2. Let φ : E → R∪{+∞} be a lsc convex function with Q ⊂ domφ. Then
the followings are equivalent.

(i) σ ∈ σ(φ).

(ii) For every x, y ∈ Q (⊂ domφ), we have

φ(x) ≥ φ(y) + φ′(y;x− y) + σξ(y, x).

Proof. Remark that, in general, the function ψ(x) := φ(x)− σd(x) satisfies

ψ′(y;x− y) = φ′(y;x− y)− σ ⟨∇d(y), x− y⟩ , ∀x, y ∈ Q. (4.2.2)

Therefore, by the definition of the Bregman distance, the condition (ii) is equivalent to

(ii)’ ψ(x) ≥ ψ(y) + ψ′(y;x− y), ∀x, y ∈ Q

Suppose that the condition (i) holds. Then, since ψ is convex on Q, we have the condition
(ii)’, that is, the condition (ii) holds.

Conversely, suppose that the condition (ii) or, equivalently, (ii)’ holds. Since φ is convex
on Q, φ′(y;x−y) ≥ −φ′(y; y−x) holds by (2.1.6) and so is true for ψ(·) by (4.2.2). Therefore,
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we obtain two inequalities ψ(y) ≥ ψ(z) + ψ′(z; y − z) and ψ(x) ≥ ψ(z) − ψ′(z; z − x) for all
x, y, z ∈ Q. Since ψ′(y; ·) is positively homogeneous, the convexity of ψ(·) on Q follows by
taking a convex combination of the two with z = αx+ (1− α)y, α ∈ [0, 1], x, y ∈ Q. □

As an immediate consequence of Proposition 4.2.2 combining with (2.1.12) and Proposi-
tion 2.1.1, we have the following.

Corollary 4.2.3. Let φ : E → R ∪ {+∞} be a lsc convex function with Q ⊂ domφ.

(i) For any σ ∈ σ(φ), the constant σdσ is a convexity parameter of φ(x) with respect to
the norm ∥·∥.

(ii) Suppose that the Bregman distance ξ(y, x) grows quadratically on Q with a constant
A > 0, that is, ξ(y, x) ≤ A

2 ∥x− y∥2 holds for every x, y ∈ Q. If φ(x) is τ -strongly
convex on Q with respect to the norm ∥·∥, then we have τ/A ∈ σ(φ).

Finally, we show that the minimizer of a strongly convex function with respect to the
prox-function has the following property which is a key in the analysis of subgradient-based
methods (see also [13, Lemma 3.2], [38, Lemma 1], [54, Lemma 3], and [58, Property 2]).

Lemma 4.2.4. For a positive constant σ > 0, let φ be a σ-strongly convex function with
respect to d on Q. Then, φ has a unique minimizer z∗ on Q satisfying the following inequality
for every z ∈ Q:

φ(z) ≥ φ(z∗) + σξ(z∗, z).

Proof. Since φ becomes σσd-strongly convex onQ with respect to the norm ∥·∥, it has a unique
minimizer z∗ on Q (Proposition 2.2.4). Then, by the optimality condition φ′(z∗;x − z∗) ≥
0, ∀x ∈ Q for the minimizer z∗ (Lemma 2.2.1), the assertion follows from Proposition 4.2.2
(ii). □

4.2.2 Non-smooth and structured convex problems

This section introduces the classes of the non-smooth and the structured convex problems
(Definitions 4.2.6 and 4.2.7, respectively) unifying some particular classes. We at first define
Assumption 4.2.5 which is assumed for the both classes. It introduces the notation mf (y;x)
which we refer a lower approximation model of f(x) (at y).

Assumption 4.2.5. The convex optimization problem (4.1.1) is equipped with a function
mf (y;x) and a parameter σf ≥ 0 satisfying the following conditions.

(i) mf (y;x) is defined for each x, y ∈ Q and, for every y ∈ Q, the function mf (y; ·) is lsc
and convex on Q satisfying f(x) ≥ mf (y;x), ∀x ∈ Q.

(ii) The parameter σf satisfies

σf ∈ σ(f) ∩
∩
y∈Q

σ(mf (y; ·)). (4.2.3)

For the problem (4.1.1) satisfying Assumption 4.2.5, we refer to the case σf > 0 as the
strongly convex case while the non strongly convex case is referred to as the one σf = 0 which
corresponds to assume the item (i) only.

Now we describe the classes of the non-smooth and the structured problems.
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Definition 4.2.6 (class of non-smooth problems). The class of non-smooth problems consists
of convex optimization problems (4.1.1) where we assume for each problem that we know a
subgradient mapping g(x) ∈ ∂f(x), x ∈ Q and a convexity parameter σf ∈ σ(f). Then, we
can naturally define its lower approximation model mf (y;x) by

mf (y;x) := f(y) + ⟨g(y), x− y⟩+ σfξ(y, x), x, y ∈ Q. (4.2.4)

Furthermore, we assume that the following optimization problem is solvable for every s ∈ E∗

and β > 0:
min
x∈Q

{⟨s, x⟩+ βd(x)}. (4.2.5)

This class of problems is denoted by NSP(g, σf ).

Notice that each problem of NSP(g, σf ) satisfies Assumption 4.2.5 because mf (y;x) −
σfd(x) is an affine function so that (4.2.3) follows.

The class NSP(g, σf ) formalizes the non-smooth problems introduced in Section 2.4.
Therefore, under the boundedness assumption (2.4.1) of subgradients, the optimal iteration
complexities of the classes NSP(g, 0) and NSP(g, σf ) for σf > 0 are given by (2.4.2) and
(2.4.3), respectively.

Definition 4.2.7 (class of structured problems). The class of structured problems consists
of convex optimization problems (4.1.1) where we assume for each problem that there exists
(mf (·; ·), σf , σ̄f , L(·), δ(·, ·)), i.e., functions and constants, satisfying the inequality

f(x) ≤ [mf (y;x)− σ̄fξ(y, x)] +
L(y)

2
∥y − x∥2 + δ(y, x), ∀x, y ∈ Q, (4.2.6)

where mf (y;x) is a lower approximation model of f(x) which admits Assumption 4.2.5 for
a convexity parameter σf ≥ 0, δ(y, ·) is a nonnegative convex function on Q for each y ∈ Q,
L(·) ≥ 0, and σ̄f ∈ [0, σf ]. We further assume that the following optimization problem is
efficiently solvable for every β ≥ 0, y ∈ E, and s ∈ E∗:

min
x∈Q

{mf (y;x) + ⟨s, x⟩+ βd(x)}. (4.2.7)

This class of problems is denoted by SP(mf , σf , σ̄f , L, δ).

We explain the role of parameters in this definition (Example 4.2.8 will show further
detail).

Although the class SP(mf , σf , σ̄f , L, δ) is quite general, we are particularly interested in
the following special cases for our purpose:

• the constant case L(y) ≡ L and δ(y, x) ≡ δ which corresponds to the inexact oracle
model;

• the case δ(y, x) = M
ρ ∥y − x∥ρ for some M ≥ 0, ρ ∈ [1, 2) which includes the weakly

smooth problems.

We will focus on these cases when we analyze the concrete convergence rates of our methods.
The parameter σ̄f represents ‘the coefficient of ξ(y, x) in mf (y;x).’ The σ̄f may take a

different value from σf when we consider the composite structure. Remark that mf (y; ·) −
σ̄fξ(y, ·) is a convex function because σf ∈ σ(mf (y; ·)) and σ̄f ∈ [0, σf ].
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The assumption of the solvability of (4.2.7) can be reduced depending on the implemen-
tation of the methods. For instance, the implementation of Theorem 4.6.4 (ii) will require
only the subproblems (4.2.7) with β = 0 which corresponds to consider a generalization of
the CGM.

The class of structured problems enables us to generalize several classes of convex opti-
mization problems as shown next.

Example 4.2.8 (examples of structured problems). Let us consider the convex optimization
problem (4.1.1). We demonstrate that the classes of convex optimization problems introduced
in Section 2.4 belong to SP(mf , σf , σ̄f , L, δ) with appropriate constants and functions.

(i) Smooth problems. Let f ∈ F1
L(Q) and σf ∈ σ(f). Define the lower approximation

model mf (y;x) by

mf (y;x) := f(y) + ⟨∇f(y), y − x⟩+ σfξ(y, x).

Due to Proposition 2.1.6 with ν = 1, we see that the inequality (4.2.6) follows with

σ̄f := σf , L(·) := L, δ(·, ·) := 0.

We remark that the corresponding subproblem (4.2.7) in the cases β > 0 and β = 0
reduces to the one (2.3.1) of the PGMs and the one (2.3.3) of the CGMs, respectively.

(ii) Weakly smooth problems. Let f ∈ Fν
M (Q) for M ≥ 0 and ν ∈ [0, 1) (the case ν = 1 for

the smooth problems was separately discussed above). By Proposition 2.1.6, we have

f(x) ≤ f(y) + ⟨g(y), x− y⟩+ M

1 + ν
∥x− y∥1+ν , ∀x, y ∈ Q

where g(y) ∈ ∂f(y) is any subgradient mapping of f (Recall that g(y) = ∇f(y) when-
ever ν > 0). For a convexity parameter σf ∈ σ(f), let us define mf (y;x) by (4.2.4).
Then, the inequality (4.2.6) follows by letting

σ̄f := σf , L(·) := 0, δ(y, x) :=
M

1 + ν
∥x− y∥1+ν .

The subproblem (4.2.7) has the same form as the smooth problems (i).

(iii) Composite structure. Suppose that the objective function f is of the form f(x) =
f0(x)+Ψ(x) where f0 ∈ Fν

M (Q) for some ν ∈ [0, 1] and Ψ is a lsc convex function on Q.
Take convexity parameters σf0 ∈ σ(f0) and σΨ ∈ σ(Ψ). Applying (i) or (ii) to f0(x),
we can define (mf0 , σ̄f0 , L(·), δ(·, ·)) so that the inequality (4.2.6) holds for the function
f0(x). Now let us define

mf (y;x) := mf0(y;x) + Ψ(x) = f0(y) + ⟨∇f0(y), y − x⟩+ σf0ξ(y, x) + Ψ(x).

Then, the inequality (4.2.6) holds with

σf := σf0 + σΨ , σ̄f := σf0

and with the above (L(·), δ(·, ·)) for f0(x). The corresponding subproblem (4.2.7) in
the cases β > 0 and β = 0 is equivalent to the one (2.4.10) of composite-type PGMs
and the one (2.4.11) of composite-type CGMs, respectively.
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(iv) Mixed smoothness. Suppose that the objective function f satisfies

f(x) ≤ f(y) + ⟨g(y), x− y⟩+ 1

2
L ∥x− y∥2 + M

1 + ν
∥x− y∥1+ν , ∀x, y ∈ Q

for a subgradient mapping g(x) ∈ ∂f(x), constants L,M ≥ 0, and ν ∈ [0, 1). Notice
that this class of convex functions covers the one of both smooth and weakly smooth
problems. The case ν = 0 corresponds to the deterministic version of the Ghadimi-Lan’s
model [25, 26] (recall (2.4.13)).

For a convexity parameter σf ∈ σ(f), define mf (y;x) by (4.2.4). Then we obtain the
inequality (4.2.6) with

σ̄f := σf , L(·) := L, δ(y, x) :=
M

1 + ν
∥x− y∥1+ν .

The subproblem (4.2.7) has the same form as the smooth problems (i).

(v) Inexact oracle model. Consider the Euclidean setting ∥·∥ = ∥·∥2, d(x) =
1
2 ∥x− x0∥22.

Suppose that f(x) is equipped with a first-order (δ, L, µ)-oracle, that is, we can compute
(f̄(y), ḡ(y)) ∈ R×E∗ for each y ∈ Q such that (2.4.14) holds. Then, we can define the
lower approximation model

mf (y;x) := f̄(y) + ⟨ḡ(y), x− y⟩+ µ

2
∥x− y∥22

of f(x) to obtain (4.2.6) with

σf := σ̄f := µ, L(·) := L, δ(y, x) := δ.

The subproblem (4.2.7) has the same form as the item (i).

□

4.3 Unifying framework for (sub)gradient-based methods

In this section, we introduce Properties A and B as a part of our unifying framework which
auxiliary functions are assumed to satisfy. We at first introduce common notations below.
They are compatible with the review of existing methods (Chapter 3).

The proposed methods are associated with the parameters {(λk, βk−1)}k≥0 and functions
{(φk(x), ψk(x))}k≥−1 where

• {λk}k≥0 is a sequence of positive real numbers which we call the weight parameters.

• {βk}k≥−1 is a nondecreasing sequence of nonnegative real numbers which we call the
scaling parameters.

• {(φk(x), ψk(x))}k≥−1 is a coupled sequence of auxiliary functions which are minimized
as subproblems at each iteration.

These parameters and functions can be determined in a recursive way during the method.
Then the methods generate the sequence {(xk, x̂k, zk−1, wk−1)}k≥0 where
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• xk ∈ Q is a test point at which we evaluate mf (xk;x) for k ≥ 0.

• zk ∈ Q is a solution of the subproblem minx∈Q φk(x) for k ≥ −1.

• wk ∈ Q is a solution of the subproblem minx∈Q ψk(x) for k ≥ −1.

• x̂k ∈ Q is an approximate solution to the problem (4.1.1) for k ≥ 0.

We sometimes consider the case of a single sequence {φk(x)}k≥−1 of auxiliary functions
regarding as ψk(x) ≡ φk(x).

We also define

Sk :=
k∑

i=0

λi (k ≥ 0), S−1 := 0.

4.3.1 General properties for the construction of auxiliary functions in the
unifying framework

Now we introduce the following framework for the auxiliary functions (We define
∑−1

i=0(·) :=
0).

Property A (in the unifying framework). Suppose that the convex optimization problem
(4.1.1) admits Assumption 4.2.5 with a lower approximation model mf (y;x) of f(x) and a
convexity parameter σf ≥ 0. Let {φk(x)}k≥−1 be a sequence of auxiliary functions associ-
ated with weight parameters {λk}k≥0, scaling parameters {βk}k≥−1, and test points {xk}k≥0.
Denote zk := argminx∈Q φk(x). Then, the following conditions hold:

(A1) φ−1(z−1) = 0 and z−1 = x0 (:= argminx∈Q d(x)).

(A2) ∀k ≥ −1, ∀x ∈ Q, we have

φk+1(x) ≥ φk(zk) + λk+1mf (xk+1;x) + βk+1d(x)− βkℓd(zk;x) + Skσfξ(zk, x). (4.3.1)

(A3) ∀k ≥ −1, φk(zk) ≤ minx∈Q

{
k∑

i=0

λimf (xi;x) + βkℓd(zk;x)− Skσfξ(zk, x)

}
.

We further consider a generalization of Property A to a coupled sequence of auxiliary
functions as follow.

Property B (in the unifying framework). Suppose that the convex optimization problem
(4.1.1) admits Assumption 4.2.5 with a lower approximation model mf (y;x) of f(x) and a
convexity parameter σf ≥ 0. Let {(φk(x), ψk(x))}k≥−1 be a coupled sequence of auxiliary
functions associated with weight parameters {λk}k≥0, scaling parameters {βk}k≥−1, and test
points {xk}k≥0. Denote zk := argminx∈Q φk(x) and wk := argminx∈Q ψk(x). Then, the
following conditions hold:

(B0) φk(x) ≥ ψk(x) for all x ∈ Q.

(B1) ψ−1(w−1) = 0 and z−1 = w−1 = x0 (:= argminx∈Q d(x)).

(B2) ∀k ≥ −1, ∀x ∈ Q, we have

ψk+1(x) ≥ φk(zk) + λk+1mf (xk+1;x) + βk+1d(x)− βkℓd(zk;x) + Skσfξ(zk, x).
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(B3) ∀k ≥ −1, ψk(wk) ≤ minx∈Q

{
k∑

i=0

λimf (xi;x) + βkℓd(zk;x)− Skσfξ(zk, x)

}
.

Notice that letting φk(x) ≡ ψk(x) in Property B exactly yields Property A.

4.3.2 (Sub)gradient-based methods in the unifying framework

Under Properties A and B, we propose the following (sub)gradient-based methods for non-
smooth problems NSP(g, σf ) and the structured problems SP(mf , σf , σ̄f , L, δ), respectively.

Method I (Subgradient-based methods for non-smooth problems in the unifying framework).

Suppose that the convex optimization problem (4.1.1) belongs to the class NSP(g, σf ). Let
{λk}k≥0 and {βk}k≥−1 be sequences of weight and scaling parameters, respectively. Generate
a sequence {(zk−1, xk, gk, x̂k)}k≥0 by either the classical or the modified method as follows.

(0) Set x̂0 := x0 := z−1 := argminx∈Q d(x).

(1) (k-th iteration, k ≥ 0) Set gk := g(xk) ∈ ∂f(xk) and compute zk, xk+1, x̂k+1 by

Classical method : xk+1 := zk := argminx∈Q φk(x), x̂k+1 :=
Skx̂k + λk+1zk

Sk+1
,

or

Modified method : zk := argminx∈Q φk(x), x̂k+1 := xk+1 :=
Skx̂k + λk+1zk

Sk+1
.

Here, {φk(x)}k≥−1 is a single sequence of auxiliary functions satisfying Property A. □

In Method I, the sequences {zk}k≥−1 and {x̂k}k≥0 can be reduced from the classical and
the modified methods, respectively, where we kept them to preserve the notation. Notice
that the update of {x̂k}k≥0 has the following alternative expressions:

x̂k+1 =
Skx̂k + λk+1zk

Sk+1
=

1

Sk+1

k∑
i=−1

λi+1zi = (1− τk)x̂k + τkzk

for k ≥ 0, where τk := λk+1/Sk+1. In particular, for the classical method, we also have

x̂k =
1

Sk

k∑
i=0

λixi, k ≥ 0.

Method II (Gradient-based methods for structured problems in the unifying framework).
Suppose that the convex optimization problem (4.1.1) belongs to the class SP(mf , σf , σ̄f , L, δ).
Let {λk}k≥0 and {βk}k≥−1 be sequences of weight and scaling parameters, respectively. Gen-
erate a sequence {(zk−1, wk−1, xk, x̂k)}k≥0 by either the classical or the modified method as
follows.

(0) Set x0 := z−1 := w−1 := argminx∈Q d(x). Compute

z0 := argmin
x∈Q

φ0(x), x̂0 := w0 := argmin
x∈Q

ψ0(x).
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(1) (k-th iteration, k ≥ 0) Set

xk+1 :=

 zk : Classical method,
Skx̂k + λk+1zk

Sk+1
: Modified method,

zk+1 := argmin
x∈Q

φk+1(x),

wk+1 := argmin
x∈Q

ψk+1(x),

x̂k+1 :=
Skx̂k + λk+1wk+1

Sk+1
.

Here, {(φk(x), ψk(x))}k≥0 is a coupled sequence of auxiliary functions satisfying Property B.
□

Again, we remark that {x̂k}k≥0 can be expressed as the following alternative ways:

x̂k+1 =
Skx̂k + λk+1wk+1

Sk+1
=

1

Sk+1

k+1∑
i=0

λi+1wi+1 = (1− τk)x̂k + τkwk+1 (4.3.2)

for k ≥ 0, where τk := λk+1/Sk+1.
In order to obtain a particular instance of these methods, we need to specify the auxiliary

functions {(φk(x), ψk(x))} as well as the weight and scaling parameters. We discuss a concrete
formula of the construction of the auxiliary functions next.

4.3.3 Concrete constructions of auxiliary functions

Here we develop recursive formulas to generate auxiliary functions satisfying Property A or B
which can be used to obtain particular instances of Methods I and II.

The following result is crucial for the main consequences of our unifying framework.

Theorem 4.3.1. Suppose that the convex optimization problem (4.1.1) admits Assump-
tion 4.2.5 with a lower approximation model mf (y;x) of f(x) and a convexity parameter
σf ≥ 0. Given the weight parameters {λk}k≥0, the scaling parameters {βk}k≥−1, and the
test points {xk}k≥0, construct the sequence {φk(x)}k≥−1 of auxiliary functions by φ−1(x) :=
β−1d(x), z−1 := x0 and, for each k ≥ −1,

φk+1(x) := θkφ
lower
k+1 (x) + (1− θk)φ

upper
k+1 (x)

where θk ∈ [0, 1] is arbitrary and

φlower
k+1 (x) := φk(zk) + λk+1mf (xk+1;x) + βk+1d(x)− βkℓd(zk;x) + Skσfξ(zk, x),

φupper
k+1 (x) := φk(x) + λk+1mf (xk+1;x) + (βk+1 − βk)d(x). (4.3.3)

Then, the sequence {φk(x)}k≥−1 satisfies Property A.

Proof. The definitions φ−1(x) := β−1d(x), z−1 := x0 := argminx∈Q d(x) clearly ensures (A1)
because of d(x0) = 0.

Since σf ∈ σ(mf (xi; ·)), ∀i ≥ 0 holds by Assumption 4.2.5, one can verify by induction
that βk + Skσf belongs to σ(φlower

k ), σ(φupper
k ), and so to σ(φk) for all k ≥ −1. Therefore, in

view of Lemma 4.2.4 for the minimizer zk = argminx∈Q φk(x), we obtain

φk(x) ≥ φk(zk) + (βk + Skσf )ξ(zk, x) (4.3.4)
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for all x ∈ Q and k ≥ −1.
Showing the condition (A2) is equivalent to prove the inequality φk+1(x) ≥ φlower

k+1 (x) for

all x ∈ Q and k ≥ −1. Indeed, we obtain φlower
k+1 (x) ≤ φk+1(x) ≤ φupper

k+1 (x), ∀x ∈ Q, ∀k ≥ −1
because

φupper
k+1 (x)− φlower

k+1 (x) = φk(x)−
[
φk(zk) + (βk + Skσf )ξ(zk, x)

] (4.3.4)

≥ 0.

Let us finally show the condition (A3). One can verify by induction the following inequal-
ity for each k ≥ −1:

φk(x) ≤
k∑

i=0

λimf (xi;x) + βkd(x), ∀x ∈ Q. (4.3.5)

In fact, the right hand side of (4.3.5) is exactly the k-th auxiliary function constructed by
the formula of the theorem with θk ≡ 0 (that is, the one updated as φk+1(x) := φupper

k+1 (x) for
all k ≥ −1). As a result, we conclude that

φk(zk)
(4.3.4)

≤ φk(x)− (βk + Skσf )ξ(zk, x)

(4.3.5)

≤
k∑

i=0

λimf (xi;x) + βkd(x)− (βk + Skσf )ξ(zk, x)

=
k∑

i=0

λimf (xi;x) + βkℓd(zk;x)− Skσfξ(zk, x)

for all x ∈ Q and k ≥ −1, which shows the condition (A3). □

As a simple consequence of Theorem 4.3.1, we obtain the following construction of a
coupled sequence of auxiliary functions satisfying Property B.

Corollary 4.3.2. Under the assumption in Theorem 4.3.1, define the sequence {ψk(x)}k≥−1

by ψ−1(x) := φ−1(x) and the recurrence

ψk+1(x) := ϑkφk+1(x) + (1− ϑk)φ
lower
k+1 (x) (4.3.6)

for an arbitrary ϑk ∈ [0, 1]. Then, the sequence {(φk(x), ψk(x))}k≥−1 satisfies Property B.

Proof. By Theorem 4.3.1, {φk(x)}k≥−1 satisfies Property A. Notice that we have

φlower
k+1 (x) ≤ ψk+1(x) ≤ φk+1(x) ≤ φupper

k+1 (x) ∀x ∈ Q, ∀k ≥ −1

by the proof of Theorem 4.3.1. Therefore, (B0) to (B3) immediately follow (use (A3) to
obtain (B3)). □

We particularly consider three special cases of Theorem 4.3.1 and Corollary 4.3.2 below,
which are important to relate to existing (sub)gradient-based methods.

• Extended Mirror-Descent (EMD) model. Define {φk(x)}k≥−1 by φ−1(x) := β−1d(x)
and

φk+1(x) := φk(zk) + λk+1mf (xk+1;x) + βk+1d(x)− βkℓd(zk;x) + Skσfξ(zk, x) (4.3.7)

for k ≥ −1. Then, Property A follows from Theorem 4.3.1 with θk ≡ 1 (namely,
φk+1 ≡ φlower

k+1 , ∀k ≥ −1).
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4.3 Unifying framework for (sub)gradient-based methods

• Dual-Averaging (DA) model. Define {φk(x)}k≥−1 by φ−1(x) := β−1d(x) and

φk(x) :=

k∑
i=0

λimf (xi;x) + βkd(x) (4.3.8)

for k ≥ 0. Then, Property A follows from Theorem 4.3.1 with θk ≡ 0 (namely, φk+1 ≡
φupper
k+1 , ∀k ≥ −1).

• Hybrid model. Define {(φk(x), ψk(x))}k≥−1 by ψ−1(x) := β−1d(x) and

φk(x) :=
∑k

i=0 λimf (xi;x) + βkd(x),
ψk+1(x) := φk(zk) + λk+1mf (xk+1;x) + βk+1d(x)− βkℓd(zk;x) + Skσfξ(zk, x)

(4.3.9)
for k ≥ −1. Then, Property B follows from Corollary 4.3.2 with θk ≡ ϑk ≡ 0 (namely,
φk+1 ≡ φupper

k+1 and ψk+1 ≡ φlower
k+1 for k ≥ −1). As an alternative, Property B is also

satisfied when we use the hybrid update (4.3.9) except initializing φ0(x) = ψ0(x) with
the DA update (4.3.8) (take ϑ−1 = 1 and ϑk = 0 for k ≥ 0 in Corollary 4.3.2).

The EMD and the DA models yield four particularizations of Method I combining with
the classical and the modified updates. Notice that, in this case, the subproblem zk :=
argminx∈Q φk(x) at each iteration is of the form (4.2.5) because of the definition (4.2.4) of
mf (y;x). In particular, if βk ≡ 0, σf = 0, and if mf (y, ·) is an affine function, then the
subproblem zk := argminx∈Q φk(x) as well as wk := argminx∈Q ψk(x) with the above models
becomes a minimization of an affine function which will yield an instance of CGM.

Method II gives six particularizations due to the additional choice of the hybrid model.
Remark that employing the EMD and the DA models in Method II reduces the number of
subproblems at each iteration since zk ≡ wk. Note that only the EMD model turns the
subproblem wk = zk := argminx∈Q φk(x) of the form (4.2.7) among the above three models;
the others require the solution of the subproblem of minimizing the function (4.3.8). However,
the subproblems with these three models have the same computational difficulty for all the
examples in Example 4.2.8.

4.3.4 Particular instances of general methods in the unifying framework

We demonstrate that Methods I and II equipped with the above models of auxiliary functions
for particular classes of optimization problems yield existing methods reviewed in Chapter 3.

Example 4.3.3. Consider a non-smooth problem in the class NSP(g, σf ). Let us see that
Method I with the EMD and the DA models yield the MDM, the DAM, and a variant of the
DAM.

(1) Let us consider the non strongly convex case σf = 0.

(1a) Mirror-descent method. Consider the auxiliary functions {φk(x)}k≥−1 defined by
the EMD model (4.3.7). If βk ≡ 1, then {φk(x)}k≥−1 is defined by φ−1(x) = d(x)
and

φk+1(x) = φk(zk) + λk+1[f(xk) + ⟨gk, x− xk⟩] + ξ(zk, x)

for k ≥ −1. Therefore, the sequence {xk}k≥0 of test points generated by the classical
method in Method I in this case is exactly the one generated by the MDM (3.1.1).
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Therefore, the classical method in Method I associated with the EMD model (4.3.7)
can be seen as a generalization of the MDM introducing the scaling parameters
{βk}k≥−1. We call this method the extended mirror-descent method.

(1b) Dual-averaging method. Consider Method I with the auxiliary functions {φk(x)}k≥−1

defined by the DA model (4.3.8). Then, the classical method yields the Nesterov’s
DAM (3.1.9) and the modified method yields the Nesterov-Shikhman’s double av-
eraging method (3.1.14).

(2) Mirror-descent method (strongly convex case). In the strongly convex case σf > 0, con-
sider the classical method of Method I with the auxiliary functions {φk(x)}k≥−1 defined
by the EMD model (4.3.7). Then, the sequence {xk}k≥0 is computed as follow.

xk+1 := zk := argmin
x∈Q

{λk[f(xk) + ⟨gk, x− xk⟩+ σfξ(xk, x)] + Sk−1σfξ(xk, x)}

= argmin
x∈Q

{λk[f(xk) + ⟨gk, x− xk⟩] + Skσfξ(xk, x)}

= argmin
x∈Q

{
λk
σfSk

[f(xk) + ⟨gk, x− xk⟩] + ξ(xk, x)

}
, k ≥ 0.

This iteration corresponds to the MDM (3.1.1) with the weight parameters {λ̃k}k≥0

defined by λ̃k := λk
σfSk

. The approximate solution x̂k = 1
Sk

∑k
i=0 λixi of Method I coincides

with the Nedić-Lee’s averaging x̃k =
(∑k

i=0 λ̃
−1
k

)−1∑k
i=0 λ̃

−1
k xi (3.1.5) when λ0 := 1 and

λk+1 :=
1+
√

1+4λ2
k

2 (k ≥ 0) because we have λ2k = Sk and so λ̃k = 1
σfλk

(see Lemma A.4

(i) in Appendix). With the another choice λk := k+1
2 , we have λ̃k = 1

σf (k+2) and the

approximate solution x̂k = 2
(k+1)(k+2)

∑k
i=0(i + 1)xi which coincides with the Bach’s

weighted average (3.1.8).

(3) Dual-averaging method (strongly convex case). Consider the auxiliary functions {φk(x)}k≥−1

defined by the DA model (4.3.8). The corresponding subproblems become

zk := argmin
x∈Q

{
k∑

i=0

λi[f(xi) + ⟨g(xi), x− xi⟩+ σfξ(xi, x)] + βkd(x)

}
.

Therefore, Method I in this case yields extensions of the DAM (3.1.9) and its variant
(3.1.14) to the strongly convex case σf > 0.

□

Example 4.3.4. Let us see that Method II with the models (4.3.7), (4.3.8), and (4.3.9) yield
some existing methods for particular structured problems.

(1) Consider the smooth problem as Example 4.2.8 (i). Let us consider the modified method
of Method II with βk ≡ L/σd. If we equip the EMD model (4.3.7), the corresponding
auxiliary function is given by φ−1(x) :=

L
σd
d(x) and

φk+1(x) := φ(zk) + λk+1[f(xk+1) + ⟨∇f(xk+1), x− xk+1⟩+ σfξ(xk+1, x)]

+
(

L
σd

+ Skσf

)
ξ(zk, x).
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Therefore, in the non strongly convex case σf = 0, we see that taking λ0 := 1, λk+1 :=
1+
√

1+4λ2
k

2 for k ≥ 0 yields the Tseng’s second APG method (3.2.10). In the strongly con-
vex case σf > 0, the corresponding algorithm can be seen as an extension of the Tseng’s
second APG method. The Nesterov’s modified method, the Tseng’s third APG method,
and the Lan’s variants of CGMs can be obtained in a similar way as we summarize their
correspondences in items (1a) to (1e) below:

(1a) Define the auxiliary function {(φk(x), ψk(x))}k≥−1 by the hybrid model (4.3.9)
except initializing φ0(x) = ψ0(x) by the DA model (4.3.8). The modified method
of Method II with this auxiliary functions in the case σf = 0, βk ≡ L/σd, λk := k+1

2
yields the Nesterov’s modified method (3.2.9).

(1b) The modified method of Method II with the EMD model (4.3.7) in the case σf = 0,

βk ≡ L/σd, λ0 := 1, λk+1 :=
1+
√

1+4λ2
k

2 yields the Tseng’s second APG method
(3.2.10).

(1c) The modified method of Method II with the DA model (4.3.8) in the case σf = 0,

βk ≡ L/σd, λ0 := 1, λk+1 :=
1+
√

1+4λ2
k

2 yields the Tseng’s third APG method
(3.2.11).

(1d) The modified method of Method II with the EMD model (4.3.7) in the case σf = 0,
βk ≡ 0, λk+1 := k+1

2 yields the Lan’s primal averaging CGM (3.2.21). Notice in

(4.3.2) that we have Sk = (k+1)(k+2)
2 and so τk = λk+1/Sk+1 =

2
k+3 .

(1e) The modified method of Method II with the DA model (4.3.8) in the case σf = 0,
βk ≡ 0, λk+1 :=

k+1
2 yields the Lan’s primal dual averaging CGM (3.2.22).

(2) Consider the composite problem minx∈Q[f(x) ≡ f0(x) + Ψ(x)] as Example 4.2.8 (iii).

(2a) Let us see that the classical method of Method II with the EMD model (4.3.7) in
the case

βk ≡
L− σ̄fσd

σd
, λ0 := 1, λk+1 :=

βk + Skσf
βk

(4.3.10)

includes the primal gradient method (3.2.1). In fact, since L
σd
λk+1 = σ̄fλk+1 +

βk + Skσf hold for k ≥ −1, the auxiliary function with the EMD model is given
by

φk(x) = φk−1(zk−1) + λk[f0(xk) + ⟨∇f0(xk), x− xk⟩+ σ̄fξ(xk, x) + Ψ(x)]

+(βk−1 + Sk−1σf )ξ(xk, x)

= φk−1(zk−1) + λk

(
f0(xk) + ⟨∇f0(xk), x− xk⟩+ Ψ(x) +

L

σd
ξ(xk, x)

)
from which the update formula xk+1 := zk = argminx∈Q φk(x) yields the primal

gradient method (3.2.1) in the Euclidean setting d(x) = 1
2 ∥x− x0∥22.

It is interesting to see that the update xk+1 = argminx∈Q{f0(xk)+⟨∇f0(xk), x− xk⟩+
Ψ(x) + L

σd
ξ(xk, x)} does not require to know parameters σ̄f and σf while the pa-

rameters βk and λk in (4.3.10) involve them.

45



Chapter 4 A Unifying Framework of Subgradient-Based Methods

(2b) Let {(φk(x), ψk(x))}k≥−1 be generated by the hybrid model (4.3.9) with the choice
(4.3.10) of parameters. Then, for k ≥ 0, we have

φk(x) =

k∑
i=0

λi[f0(xi) + ⟨∇f0(xi), x− xi⟩+ σ̄fξ(xi, x) + Ψ(x)] + βkd(x).

In the Euclidean setting d(x) = 1
2 ∥x− x0∥22 and the non strongly convex case

σ̄f = σf = 0, the classical method of Method II taking λk ≡ 1 and βk ≡ L yields
the same sequence {xk}k≥0 as the dual gradient method (3.2.2). As the same way
as (2a), we also have wk = argminx∈Q{f0(xk)+ ⟨∇f0(xk), x− xk⟩+ L

2 ∥x− xk∥22+
Ψ(x)} in this case which is compatible with the notation wk in (3.2.3).

The DA model (4.3.8) also generates the same {φk(x)} as above. Then, the se-
quence {xk}k≥0 of test points generated by the classical method in Method II are
the same as the one of the dual gradient method (3.2.2) while the wk does not
coincides with the one (3.2.3) since wk = zk = argminx∈Q φk(x). Therefore, in this
case, the DA model reduces the number of subproblems from two to one compared
with the hybrid model (but they generate different approximate solutions).

(3) Consider the convex optimization problem with the inexact oracle model as Exam-
ple 4.2.8 (v) (then, σf = σ̄f = µ, σd = 1).

(3a) Similar to (2a), the classical method of Method II with EMD model (4.3.7) and
with the choice (4.3.10) of parameters yields the primal gradient method (3.2.5).

(3b) The classical method of Method II with the hybrid model (4.3.9) yields the dual
gradient method (3.2.6) when we choose constant βk ≡ β > 0: in fact, the corre-
sponding auxiliary function φk(x) is given by

φk(x) =

k∑
i=0

λi

[
f̄(xi) + ⟨ḡ(xi), x− xi⟩+

µ

2
∥x− xi∥22

]
+
β

2
∥x− x0∥22

from which the update xk+1 := zk = argminx∈Q φk(x) is compatible with the one
(3.2.6) (the weight parameters correspond up to multiplication). If we further
choose the parameters by (4.3.10), we obtain the compatibility with the notation
wk = argminx∈Q{f̄(xk)+ ⟨ḡ(xk), x− xk⟩+ L

2 ∥x− xk∥22} as (2a). We remark that,
in general, the choice (4.3.10) of parameters is not equivalent to the one (3.2.8)
analyzed in [17]; we will suggest (4.3.10) as an alternative choice (Theorem 4.6.1).

□

As discussed in Example 4.3.3 (1a) above, we propose the following new extension of the
MDM in the non strongly convex case.

Method 4.3.5 (extended mirror-descent method for NSP(g, 0)). Suppose that we know a
subgradient mapping g(x) ∈ ∂f(x), x ∈ Q in the convex optimization problem (4.1.1). Let
{λk}k≥0 and {βk}k≥−1 be sequences of weight and scaling parameters, respectively. Starting
from x0 := z−1 := argminx∈Q d(x), iterate

gk := g(xk) ∈ ∂f(xk), xk+1 := argmin
x∈Q

{λk[f(xk) + ⟨gk, x− xk⟩] + βkd(x)− βk−1ℓd(zk−1;x)}
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for k ≥ 0. Define the sequence {x̂k}k≥0 of approximate solutions by

x̂k :=
1

Sk

k∑
i=0

λixi, k ≥ 0.

□

In particular, the original MDM (3.1.1) is obtained by letting βk ≡ 1 in the extended
MDM.

Due to Theorem 4.3.1 and Corollary 4.3.2, we can provide infinitely many instances of
PGMs and CGMs via Methods I and II. In Table 4.1 below, We summarize important cases
given by the EMD, the DA, and the hybrid models.

Table 4.1: Particular instances of the proposed methods. The column ‘Aux. func.’ corre-
sponds to the model of auxiliary functions defined in Section 4.3.3. The star (∗) is attached
for new methods. In particular, ‘*an extension’ means a new extension of the left to the
strongly convex case. The dagger symbol (†) means that our method and the existing one
shares a particular instance.

Method type Aux. func. Non strongly convex case Strongly convex case

classical method
of Method I

DA dual-averaging [52] *an extension

EMD
mirror-descent [46] †Nedić-Lee’s averaging [43]

*extended MDM (Method 4.3.5) Bach’s averaging [3]

modified method
of Method I

DA double averaging [56] *an extension
EMD *double averaging for the MDM *an extension

classical method
of Method II

EMD primal gradient method [18, 53] (without line search)
Hybrid dual gradient method [18, 53] (without line search)
DA *a variant of the dual gradient method [18, 53]

modified method
of Method II

EMD
†Tseng’s second APG [58] *an extension

†Lan’s primal averaging CGM [35] —

DA
†Tseng’s third APG [58] *an extension

†Lan’s primal dual averaging CGM [35] —
Hybrid
(+DA)

Nesterov’s modified method [50] *an extension

4.4 General convergence estimates of subgradient-based meth-
ods in the unifying framework

In this section, we prove a general convergence estimates of Methods I and II for the non-
smooth and the structured problems. These results will be used to derive particular rates of
convergence in the next sections.

We will obtain different convergence estimates for the classical and the modified methods.
We show in Section 4.5 that they have the same rate of convergence for the non-smooth
problems but, for the smooth problems, the modified method gives much better efficiency
than the classical method as discussed in Sections 4.6.
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In the remainder of this section, we aim to prove the following general estimates, Theo-
rems 4.4.1 and 4.4.2, after which we can focus on the choice of parameters {λk} and {βk} to
ensure an efficient convergence rate.

Theorem 4.4.1. Consider a non-smooth problem in the class NSP(g, σf ). Let {(zk−1, xk, gk,
x̂k)}k≥0 be generated by Method I associated with weight parameters {λk}k≥0 and scaling
parameters {βk}k≥−1. Then, for every k ≥ 0, the estimate

f(x̂k)− f(x∗) + σfξ(zk, x
∗) ≤ βkℓd(zk;x

∗) + Ck

Sk
(4.4.1)

holds, where

Ck :=


1

2σd

∑k
i=0

λ2
i

βi−1+Siσf
∥gi∥2∗ for the classical method; and

1
2σd

∑k
i=0

λ2
iSi

λ2
i σf+Si(βi−1+Si−1σf )

∥gi∥2∗ for the modified method.
(4.4.2)

Furthermore, for every k ≥ 0, the above estimate holds even replacing the left hand side
by 1

Sk

∑k
i=0 λif(xi) − f(x∗) + σfξ(zk, x

∗) or by min0≤i≤k f(xi) − f(x∗) + σfξ(zk, x
∗) for the

classical method.

Theorem 4.4.2. Consider a structured problem in the class SP(mf , σf , σ̄f , L, δ). Let {(zk−1,
wk−1, xk, x̂k)}k≥0 be generated by Method II associated with weight parameters {λk}k≥0 and
scaling parameters {βk}k≥−1. Then, for every k ≥ 0, the estimate

f(x̂k)− f(x∗) + σfξ(zk, x
∗) ≤ βkℓd(zk;x

∗) + Ck

Sk
(4.4.3)

holds, where

Ck :=



1
2

∑k
i=0 λi

(
L(xi)− σd

(
σ̄f +

βi−1+Si−1σf

λi

))
∥wi − xi∥2 +

∑k
i=0 λiδ(xi, wi)

for the classical method; and

1
2

∑k
i=0 Si

(
L(xi)− σd

(
σ̄f +

Si(βi−1+Si−1σf )

λ2
i

))
∥x̂i − xi∥2 +

∑k
i=0 Siδ(xi, x̂i)

for the modified method.

(4.4.4)
Furthermore, for every k ≥ 0, the above estimate holds even replacing the left hand side
by 1

Sk

∑k
i=0 λif(wi)− f(x∗) + σfξ(zk, x

∗) or by min0≤i≤k f(wi)− f(x∗) + σfξ(zk, x
∗) for the

classical method.

Remark 4.4.3. Method II with σf = σ̄f = 0 and βk ≡ 0 yields several versions of CGMs
because the constructed auxiliary functions are non-negative linear combinations of constants
and {mf (xi;x)}ki=0. In this case, Theorem 4.4.2 implies that the modified method ensures

f(x̂k)− f(x∗) ≤ Ck

Sk
≤

1
2Diam(Q)2

∑k
i=0 L(xi)

λ2
i

Si

Sk
+

∑k
i=0 Siδ(xi, x̂i)

Sk
(4.4.5)

for all k ≥ 0, because ∥x̂i − xi∥2 =
λ2
i

S2
i
∥wi − zi−1∥2 ≤ λ2

i

S2
i
Diam(Q)2. This bound resembles

with the result [22, Theorem 5.3] of the classical CGM for the inexact oracle model. In fact,
if mf (y; ·) is affine for each y ∈ Q (say, mf (y;x) = f̄(y) + ⟨ḡ(y), x− y⟩), then the classical
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CGM (3.2.19) can be arranged by replacing ∇f with ḡ so that it is applicable to structured
problems in SP(mf , 0, 0, L, δ). Then, taking parameters τk := λk+1/Sk+1 and x̂k := xk, the
arranged classical CGM admits the estimate1

f(x̂k)− f(x∗) ≤ λ0[f(x0)− f(x∗)]

Sk
+

1
2Diam(Q)2

∑k
i=1 L(xi−1)

λ2
i

Si

Sk
+

∑k
i=1 Siδ(xi−1, xi)

Sk
(4.4.6)

for all k ≥ 0. □

4.4.1 Key strategy of the proof

Although we have firstly shown the descriptions of Methods I and II, they can be derived
as a consequence of the discussion in this section. Moreover, we simultaneously obtain their
general convergence estimate shown in Theorems 4.4.1 and 4.4.2. Therefore, our observation
is taken under a general assumption rather than the ones in Theorems 4.4.1 and 4.4.2.

For non-smooth or structured problems, we generally consider a coupled sequence {(φk(x),
ψk(x))}k≥−1 of auxiliary functions satisfying Property B associated with weight parameters
{λk}k≥0, scaling parameters {βk}k≥−1, and test points {xk}k≥0. Then, we try to find a
sequence {x̂k} ⊂ Q and constants {Ck}k≥0 satisfying the following relation

(Rk) Skf(x̂k) ≤ ψk(wk) + Ck

for each k ≥ 0. We use this relation to prove the estimates (4.4.1) and (4.4.3).
We also consider the alternative relations

(Pk)
k∑

i=0

λif(xi) ≤ ψk(wk) + Ck and (Qk)
k∑

i=0

λif(wi) ≤ ψk(wk) + Ck

to prove the latter assertion of Theorems 4.4.1 and 4.4.2, respectively.
These relations yield the following estimate.

Lemma 4.4.4. Suppose that the convex optimization problem (4.1.1) admits Assumption 4.2.5
with a lower approximation model mf (y;x) of f(x) and a convexity parameter σf ≥ 0. Sup-
pose further that a sequence {x̂k}k≥0 ⊂ Q satisfies the relation (Rk) for a coupled sequence
{(φk(x), ψk(x))}k≥−1 of auxiliary functions associated with weight parameters {λk}k≥0, scal-
ing parameters {βk}k≥−1, and test points {xk}k≥0. If the condition (B3) in Property B holds,
then we have

f(x̂k)− f(x) + σfξ(zk, x) ≤
βkℓd(zk;x) + Ck

Sk
, ∀x ∈ Q. (4.4.7)

Proof. The assertion follows from the condition (B3) and the relation (Rk); for any x ∈ Q,
we have

Skf(x̂k) ≤
k∑

i=0

λimf (xi;x) + βkℓd(zk;x)− Skσfξ(zk, x) + Ck

≤ Skf(x) + βkℓd(zk;x)− Skσfξ(zk, x) + Ck.

□
1 The proof of [22, Theorem 5.3] (with B0 = h∗ so that Bk = h∗) replacing the notation (h(·), λk+1, λ̃k+1,

Lk+1, δk+1, ᾱk+1, βk+1, αk) of [22] by (−f(·), xk, zk, L(xk), δ(xk, xk+1), τk, Sk/λ0, λk/λ0) for k ≥ 0 shows the
desired estimate because showing the result uses the assumption [22, eq. (52)] with (L, δ) = (Lk+1, δk+1) only
at (λ, λ̄) = (λk+2, λk+1), which corresponds to our assumption (4.2.6) at (x, y) = (xk, xk+1).
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Remark 4.4.5. (1) Analogues of Lemma 4.4.4 easily show that (Pk) and (B3) imply the
inequality

min
0≤i≤k

f(xi)− f(x) + σfξ(zk, x) ≤
1

Sk

k∑
i=0

λif(xi)− f(x) + σfξ(zk, x) ≤
βkℓd(zk;x) + Ck

Sk

for x ∈ Q. The conditions (Qk) and (B3) also conclude the same replacing xi by wi.
(2) When σf > 0, (4.4.7) provides bounds for the distances to x∗ from x̂k and zk: According
to the facts f(x) − f(x∗) ≥ σfξ(x

∗, x) and ξ(x, y) ≥ σd
2 ∥x− y∥2 for x, y ∈ Q, the bound

(4.4.7) implies

min
{
∥x̂k − x∗∥2 , ∥zk − x∗∥2

}
≤ 1

2
∥x̂k − x∗∥2 + 1

2
∥zk − x∗∥2 ≤ βkℓd(zk;x

∗) + Ck

σfσdSk
.

□
Lemma 4.4.4 and Remark 4.4.5 (1) suggest us to prove (Rk) and its variants (Pk) or (Qk)

in order to complete Theorems 4.4.1 and 4.4.2 (as detailed in Section 4.4.5). We now turn
an induction to establish them.

4.4.2 Validity of (Rk), (Pk), and (Qk) when k = 0

We start our induction in the case k = 0. Note that the settings of (i) and (ii) in the following
lemma are exactly the situations of the initialization step (0) in Methods I and II, respectively.

Lemma 4.4.6. (i) Consider a non-smooth problem in the class NSP(g, σf ) and let {(φk(x),
ψk(x))}k≥−1 be a coupled sequence of auxiliary functions satisfying Property B associated with
weight parameters {λk}k≥0, scaling parameters {βk}k≥−1, and test points {xk}k≥0. Then, the
relation (R0) ≡ (P0) is satisfied with x̂0 := x0 and

C0 :=
1

2

λ20
σd(λ0σf + β−1)

∥g0∥2∗ . (4.4.8)

(ii) Consider a structured problem in the class SP(mf , σf , σ̄f , L, δ) and let {(φk(x), ψk(x))}k≥−1

be a coupled sequence of auxiliary functions satisfying Property B associated with weight pa-
rameters {λk}k≥0, scaling parameters {βk}k≥−1, and test points {xk}k≥0. Then, the relation
(R0) ≡ (Q0) is satisfied with x̂0 := w0 and

C0 := λ0

(
L(x0)

2
− σd

2

(
σ̄f +

β−1

λ0

))
∥w0 − x0∥2 + λ0δ(x0, x̂0). (4.4.9)

Proof. Note that, in general, (B0) implies φk(zk) = minx∈Q φk(x) ≥ minx∈Q ψk(x) = ψk(wk).
Since {βk} is non-decreasing, using (B2) with x = wk+1 yields that

ψk+1(wk+1) ≥ φk(zk) + λk+1mf (xk+1;wk+1) + (βk + Skσf )ξ(zk, wk+1)

≥ ψk(wk) + λk+1mf (xk+1;wk+1) + (βk + Skσf )ξ(zk, wk+1) (4.4.10)

for every k ≥ −1. Let σ ≥ 0 be an arbitrary nonnegative number. Then, the conditions (B1)
and S−1 = 0 lead (4.4.10) with k = −1 to

ψ0(w0) ≥ λ0

[
mf (x0;w0)− σξ(x0, w0) +

(
σ +

β−1

λ0

)
ξ(x0, w0)

]
≥ λ0

[
mf (x0;w0)− σξ(x0, w0) +

σd
2

(
σ +

β−1

λ0

)
∥w0 − x0∥2

]
. (4.4.11)
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Let us firstly show (ii). Letting σ := σ̄f , the settings x̂0 = w0 and (4.4.9) yields

ψ0(w0) + C0

(4.4.11)

≥ λ0

[
mf (x0;w0)− σ̄fξ(x0, x̂0) +

L(x0)

2
∥x̂0 − x0∥2 + δ(x0, x̂0)

]
≥ λ0f(x̂0)

which proves the relation (R0).

It remains to prove (i). By the definition (4.2.4) of mf (·; ·) for the non-smooth case, the
inequality (4.4.11) with σ := σf implies

ψ0(w0)
(4.4.11)

≥ λ0

[
f(x0) + ⟨g0, w0 − x0⟩+

σd
2

(
σf +

β−1

λ0

)
∥w0 − x0∥2

]
= λ0f(x0) + ⟨λ0g0, w0 − x0⟩+

σd
2

(λ0σf + β−1) ∥w0 − x0∥2

≥ λ0f(x0)−
1

2

λ20
σd(λ0σf + β−1)

∥g0∥2∗ ,

where the last inequality is due to the basic fact

1

2
∥x∥2 + 1

2
∥s∥2∗ ≥ ⟨s, x⟩ for x ∈ E, s ∈ E∗. (4.4.12)

This means that the relation (R0) is satisfied with the setting x̂0 = x0 and (4.4.8). □

4.4.3 Validity of (Rk), (Pk), and (Qk) for the classical method when k > 0

Let us complete our induction for the classical method. The items (i) and (ii) in the fol-
lowing lemma correspond to the k-th iteration of the classical method in Methods I and II,
respectively.

Lemma 4.4.7. (i) Consider a non-smooth problem in the class NSP(g, σf ) and let {(φk(x),
ψk(x))}k≥−1 be a coupled sequence of auxiliary functions satisfying Property B associated with
weight parameters {λk}k≥0, scaling parameters {βk}k≥−1, and test points {xk}k≥0. Suppose
for k ≥ 0 that the relation (Rk) is satisfied for some x̂k ∈ Q, Ck ≥ 0. If the relation xk+1 = zk
holds, then the relation (Rk+1) is satisfied with x̂k+1 :=

Skx̂k+λk+1xk+1

Sk+1
and

Ck+1 := Ck +
1

2σd

λ2k+1

βk + Sk+1σf
∥gk+1∥2∗ . (4.4.13)

Furthermore, if (Pk) is satisfied, then so is (Pk+1) with the same settings of xk+1 and Ck+1.

(ii) Consider a structured problem in the class SP(mf , σf , σ̄f , L, δ) and let {(φk(x), ψk(x))}k≥−1

be a coupled sequence of auxiliary functions satisfying Property B associated with weight pa-
rameters {λk}k≥0, scaling parameters {βk}k≥−1, and test points {xk}k≥0. Suppose for k ≥ 0
that the relation (Rk) is satisfied for some x̂k ∈ Q, Ck ≥ 0. If the relation xk+1 = zk holds,

then the relation (Rk+1) is satisfied with x̂k+1 :=
Skx̂k+λk+1wk+1

Sk+1
and

Ck+1 := Ck+λk+1

(
L(xk+1)

2
− σd

2

(
σ̄f +

βk + Skσf
λk+1

))
∥wk+1 − xk+1∥2+λk+1δ(xk+1, wk+1).

Furthermore, if (Qk) is satisfied, then so is (Qk+1) with the same settings of xk+1 and Ck+1.
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Proof. Using (4.4.10) and the relation xk+1 = zk imply for any σ ≥ 0 that

ψk+1(wk+1) ≥ ψk(wk) + λk+1mf (xk+1;wk+1) + (βk + Skσf )ξ(zk, wk+1)

= ψk(wk) + λk+1

(
mf (xk+1;wk+1)− σξ(xk+1, wk+1)

+

(
σ +

βk + Skσf
λk+1

)
ξ(xk+1, wk+1)

)

≥ ψk(wk) + λk+1

(
mf (xk+1;wk+1)− σξ(xk+1, wk+1)

+
σd
2

(
σ +

βk + Skσf
λk+1

)
∥wk+1 − xk+1∥2

)
.

For the structured problems, letting σ := σ̄f and the definition of Ck+1 in (ii) yield that

ψk+1(wk+1) + Ck+1 ≥ ψk(wk) + Ck + λk+1f(wk+1).

Using (Rk) and the convexity of f conclude the relation (Rk+1); (Qk+1) follows by using (Qk)
and the inequality above. Hence, the assertion (ii) is proved.

For the non-smooth problems, on the other hand, we can continue by taking σ := σf as
follows.

ψk+1(wk+1) ≥ ψk(wk) + λk+1f(xk+1)

+ ⟨λk+1gk+1, wk+1 − xk+1⟩+
σd
2
(βk + Sk+1σf ) ∥wk+1 − xk+1∥2

(4.4.12)

≥ ψk(wk) + λk+1f(xk+1)−
1

2

λ2k+1

σd(βk + Sk+1σf )
∥gk+1∥2∗ .

Hence, the definition (4.4.13) of Ck+1 yields that

ψk+1(wk+1) + Ck+1 ≥ ψk(wk) + Ck + λk+1f(xk+1).

Now the assertion (i) follows by the same way as (ii). □

4.4.4 Validity of (Rk) for the modified method when k > 0

The following lemma completes our induction for the modified method. In a similar manner
as Lemma 4.4.7, the items (i) and (ii) below correspond to the k-th iteration of the modified
method in Methods I and II, respectively.

Lemma 4.4.8. (i) Consider a non-smooth problem in the class NSP(g, σf ) and let {(φk(x),
ψk(x))}k≥−1 be a coupled sequence of auxiliary functions satisfying Property B associated with
weight parameters {λk}k≥0, scaling parameters {βk}k≥−1, and test points {xk}k≥0. Suppose
for k ≥ 0 that the relation (Rk) is satisfied for some x̂k ∈ Q, Ck ≥ 0. If the relation

xk+1 =
Skx̂k+λk+1zk

Sk+1
holds, then the relation (Rk+1) is satisfied with x̂k+1 := xk+1 and

Ck+1 := Ck +
1

2σd

λ2k+1Sk+1

λ2k+1σf + Sk+1(βk + Skσf )
∥gk+1∥2∗ . (4.4.14)
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(ii) Consider a structured problem in the class SP(mf , σf , σ̄f , L, δ) and let {(φk(x), ψk(x))}k≥−1

be a coupled sequence of auxiliary functions satisfying Property B associated with weight pa-
rameters {λk}k≥0, scaling parameters {βk}k≥−1, and test points {xk}k≥0. Suppose for k ≥ 0

that the relation (Rk) is satisfied for some x̂k ∈ Q, Ck ≥ 0. If the relations xk+1 =
Skx̂k+λk+1zk

Sk+1

and x̂k+1 =
Skx̂k+λk+1wk+1

Sk+1
hold, then the relation (Rk+1) is satisfied with

Ck+1 := Ck + Sk+1

(
L(xk+1)

2
− σd

2

(
σ̄f +

Sk+1(βk + Skσf )

λ2k+1

))
∥x̂k+1 − xk+1∥2

+Sk+1δ(xk+1, x̂k+1). (4.4.15)

Proof. Denote x′k+1 :=
Skx̂k+λk+1wk+1

Sk+1
. If xk+1 =

Skx̂k+λk+1zk
Sk+1

holds, then x′k+1 − xk+1 =
λk+1

Sk+1
(wk+1 − zk). Using (4.4.10) and the relation (Rk), we have

ψk+1(wk+1) + Ck ≥ ψk(wk) + Ck + λk+1mf (xk+1;wk+1) + (βk + Skσf )ξ(zk, wk+1)

≥ Skf(x̂k) + λk+1mf (xk+1;wk+1) + (βk + Skσf )ξ(zk, wk+1)

≥ Skmf (xk+1; x̂k) + λk+1mf (xk+1;wk+1) + (βk + Skσf )ξ(zk, wk+1)

≥ Sk+1mf (xk+1;x
′
k+1) + (βk + Skσf )ξ(zk, wk+1), (4.4.16)

where we used f(x) ≥ mf (y;x),∀x, y ∈ Q and the convexity of mf (xk+1; ·) for the last two

inequalities, respectively. Since ξ(zk, wk+1) ≥ σd
2 ∥wk+1 − zk∥2 = σd

2

S2
k+1

λ2
k+1

∥∥x′k+1 − xk+1

∥∥2 and

mf (xk+1;x
′
k+1) = mf (xk+1;x

′
k+1)− σξ(xk+1, x

′
k+1) + σξ(xk+1, x

′
k+1)

≥ mf (xk+1;x
′
k+1)− σξ(xk+1, x

′
k+1) +

σσd
2

∥∥xk+1 − x′k+1

∥∥2
hold for any σ ≥ 0, the inequality (4.4.16) implies that

ψk+1(wk+1) + Ck ≥ Sk+1[mf (xk+1;x
′
k+1)− σξ(xk+1, x

′
k+1)]

+
σd
2
Sk+1

(
σ +

Sk+1(βk + Skσf )

λ2k+1

)∥∥x′k+1 − xk+1

∥∥2 . (4.4.17)
Let us prove (ii) at first. Since x̂k+1 = x′k+1 by the assumption, adding

Sk+1

(
L(xk+1)

2
− σd

2

(
σ̄f +

Sk+1(βk + Skσf )

λ2k+1

))
∥x̂k+1 − xk+1∥2 + Sk+1δ(xk+1, x̂k+1)

to both sides in (4.4.17) with σ := σ̄f and using the inequality (4.2.6) imply the relation
(Rk+1) with Ck+1 defined by (4.4.15).

To prove (i), on the other hand, letting σ := σf and usingmf (xk+1;x
′
k+1)−σξ(xk+1, x

′
k+1) =

f(xk+1) +
⟨
gk+1, x

′
k+1 − xk+1

⟩
leads (4.4.17) to

ψk+1(wk+1) + Ck ≥ Sk+1f(xk+1) +
⟨
Sk+1gk+1, x

′
k+1 − xk+1

⟩
+
σd
2
Sk+1

(
σf +

Sk+1(βk + Skσf )

λ2k+1

)∥∥x′k+1 − xk+1

∥∥2
(4.4.12)

≥ Sk+1f(xk+1)−
1

2

S2
k+1

σdSk+1

(
σf +

Sk+1(βk+Skσf )

λ2
k+1

) ∥gk+1∥2∗

= Sk+1f(xk+1)−
1

2σd

λ2k+1Sk+1

λ2k+1σf + Sk+1(βk + Skσf )
∥gk+1∥2∗ .
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This means that the relation (Rk+1) is obtained with Ck+1 defined by (4.4.14). □

4.4.5 Proof of Theorems 4.4.1 and 4.4.2

Let us complete the proof of Theorem 4.4.1.

Recall that Method I is equipped with a single sequence {φk(x)}k≥−1 of auxiliary func-
tions satisfying Property A. Let {ψk(x)}k≥−1 be any sequence so that the coupled sequence
{(φk(x), ψk(x))}k≥−1 satisfies Property B (e.g., take ψk := φk). By the description of
Method I, we can apply part (i) of each Lemmas 4.4.6, 4.4.7, and 4.4.8 to show that the
relation (Rk) holds for every k ≥ 0 with Ck defined by (4.4.2); for the classical method, the
relation (Pk) can also be verified. The assertion follows from Lemma 4.4.4 and its analogue
for the relation (Pk) (see Remark 4.4.5 (1)). □

Remark that this proof additionally introduced {ψk(x)}k≥−1 but it did not affect our
conclusion because its dependence appears only in the relations (Rk) and (Pk).

Theorem 4.4.2 can be proved as an analogue replacing (Pk) with (Qk) and the part (i)
with (ii) in Lemmas 4.4.6, 4.4.7, 4.4.8. Note that, in this case, we do not need to introduce
an additional {ψk(x)}k≥−1 since it is already in our assumption.

4.5 Optimal rate of convergence for non-smooth problems

From this section to Section 4.7, we discuss rates of convergence of the proposed methods for
specific classes of problems. We firstly focus on Method I for the non-smooth problems in
the class NSP(g, σf ). Our aim is to find explicit choices of weight parameters {λk}k≥0 and
scaling parameters {βk}k≥−1 which ensure an efficient convergence. Recall that the optimal
complexity for the non-smooth problems is given by

O

(
M2R2

ε

)
and O

(
M2

σfε

)
for the non strongly and strongly convex cases, respectively, where M = sup{∥g∥∗ | x ∈
Q, g ∈ ∂f(x)} and R = 1

σd

√
d(x∗).

We divide our discussion into the non strongly convex and the strongly convex cases in
Sections 4.5.1 and 4.5.2, respectively.

4.5.1 Optimal rate of convergence in the non strongly convex case

Let us consider Method I in the non strongly convex case σf = 0. In the next theorem, we
analyze two choices of parameters {λk}k≥0 and {βk}k≥−1, called the simple and the weighted
averages [52, eq. (2.21) and (2.22)], which ensure the optimal convergence rate. These choices
utilize the sequence {β̂k}k≥−1 defined in (3.1.13) where we use the identity

∀k ≥ 0, β̂k =
k−1∑
i=−1

1

β̂i
(4.5.1)

and the inequality [52, Lemma 3]

∀k ≥ 0,
√
2k + 1 ≤ β̂k ≤ 1

1 +
√
3
+
√
2k + 1. (4.5.2)
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Theorem 4.5.1 (see also [52]). Consider a non strongly convex and non-smooth problem in
the class NSP(g, 0). Let {β̂k}k≥−1 be the sequence defined by (3.1.13).

(Simple Averages) Let {(zk−1, xk, gk, x̂k)}k≥0 be generated by Method I with parameters

λk := 1 and βk := γβ̂k for some γ > 0. Then we have

∀k ≥ 0, f(x̂k)− f(x∗) ≤
(
γℓd(zk;x

∗) +
M2

k

2σdγ

)
0.5 +

√
2k + 1

k + 1
(4.5.3)

and

∀k ≥ −1, zk, xk+1, x̂k+1 ∈
{
x ∈ Q : ∥x− x∗∥2 ≤ 2d(x∗)

σd
+

M2
k

σ2dγ
2

}
(4.5.4)

where M−1 = 0 and Mk = max
0≤i≤k

∥gi∥∗ for k ≥ 0.

(Weighted Averages) Let {(zk−1, xk, gk, x̂k)}k≥0 be generated by Method I with parameters

λk :=
1

∥gk∥∗
and βk :=

β̂k
ρ
√
σd

for some ρ > 0. Then we have

∀k ≥ 0, f(x̂k)− f(x∗) ≤Mk
1

√
σd

(
ℓd(zk;x

∗)

ρ
+
ρ

2

)
0.5 +

√
2k + 1

k + 1
(4.5.5)

and

∀k ≥ −1, zk, xk+1, x̂k+1 ∈
{
x ∈ Q : ∥x− x∗∥2 ≤ 2d(x∗) + ρ2

σd

}
. (4.5.6)

Moreover, for both simple and weighted averages, the above f(x̂k) − f(x∗)’s can be re-
placed by its upper bound 1

Sk

∑k
i=0 λif(xi) − f(x∗) when we use the classical method in

Method I. In this case, the left hand side of the inequality can be replaced by min{f(x̂k) −
f(x∗),min0≤i≤k f(xi)− f(x∗)}.

Proof. Because σf = 0, both the classical and the modified methods yield the same estimate
of Theorem 4.4.1:

∀k ≥ 0, f(x̂k)− f(x∗) ≤
βkℓd(zk;x

∗) + 1
2σd

∑k
i=0

λ2
i

βi−1
∥gi∥2∗

Sk
.

Substituting the specified (λk, βk) in the simple and the weighted averages shows (4.5.3) and
(4.5.5), respectively, thanks to the properties (4.5.1) and (4.5.2) of β̂k.

Denote by Bk the ball on the right hand side of (4.5.4) for k ≥ −1. Then Bk ⊂ Bk+1

for each k ≥ −1. The inequality (4.5.3) implies that γℓd(zk;x
∗) + (2σdγ)

−1M2
k ≥ 0 for all

k ≥ 0, and using the strong convexity, d(x∗) ≥ ℓd(zk;x
∗) + σd

2 ∥x∗ − zk∥2, we can obtain
that zk ∈ Bk for each k ≥ 0. We also have z−1 ∈ B−1 since z−1 = x0 = argminx∈Q d(x),

d(z−1) = d(x0) = 0, and d(x∗) ≥ ℓd(z−1;x
∗) + σd

2 ∥z−1 − x∗∥2 ≥ σd
2 ∥z−1 − x∗∥2. Finally,

we conclude that xk+1, x̂k+1 ∈ Bk for all k ≥ −1 because they are convex combinations of
{zi}ki=−1. The proof of (4.5.6) is similar. □
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Remark 4.5.2. The bounds (4.5.3) and (4.5.5) are slightly smaller than the ones in (3.3) and
(3.5) in [52], respectively, because of ℓd(zk;x

∗) ≤ d(x∗) ≤ D. However, essentially, Nesterov’s
original argument also arrives to the same bound when d(x) is continuously differentiable on
Q (note that [52] does not impose the differentiability on d(x)). In fact, in [52], Theorems 2
and 3 rely on the estimate (2.15) which is implied from (2.18). Notice in (2.18) that we have

−Vβk+1
(−sk+1) = min

x∈Q
{⟨sk+1, x− x0⟩+ βk+1d(x)} = min

x∈Q
{⟨sk+1, x− x0⟩+ βk+1ℓd(xk+1;x)}

by the optimality of xk+1 = πβk+1
(−sk+1). Then adding

∑k
i=0 λi[f(xi) + ⟨gi, x0 − xi⟩] and

using sk+1 =
∑k

i=0 λigi in (2.18), we obtain

k∑
i=0

λif(xi) ≤ min
x∈Q

{
k∑

i=0

λi[f(xi) + ⟨gi, x− xi⟩] + βk+1ℓd(xk+1;x)

}
+

1

2σd

k∑
i=0

λ2i
βi

∥gi∥2∗

which corresponds to the relation (R̂k)
2. This yields the same bound as our analysis for the

DA model. □

A consequence of Corollary 4.5.1 is that if M := sup{∥g∥∗ : g ∈ ∂f(x), x ∈ Q} is finite,
Method I generates a sequence {x̂k} such that f(x̂k) → f(x∗) with a rate O(1/

√
k) in the

number k of iterations. In particular, if we know an upper bound R ≥
√

1
σd
d(x∗) and for the

single averages case additionally the M , the choices γ := M√
2σdR

and ρ :=
√
2σdR make the

estimates (4.5.3) and (4.5.5) optimal, respectively, giving the optimal iteration complexity
O(M2R2/ε2) for the non-smooth problems. Also Method I with the parameters suggested in
Corollary 4.5.1 produces bounded sequences {xk}, {x̂k}, and {zk} (even if M = +∞ for the
weighted averages case).

These features are similar to the DAM. We can obtain the optimal convergence rate if we
know an upper bound for d(x∗), but without assuming the compactness of Q and fixing the
required number of iterations.

It is important to note that, according to Corollary 4.5.1, the extended MDM (Method 4.3.5)
ensures the rate O(1/

√
k) of convergence without fixing a priori the total number of iterations

and knowing an upper bound of d(x∗) required for the weight parameters (3.1.4) of the orig-
inal MDM. Furthermore, this advantage holds even if the feasible set Q is unbounded. The
existing averaging techniques [43, 44] of the MDM assume the compactness of Q to achieve
the same complexity.

Method I with the DA model (4.3.8) recovers the convergence result for the Nesterov’s
DAM (3.1.9) and its variant (3.1.14). In particular, Theorem 4.4.1 and Corollary 4.5.1 pro-
vide a small improvement over the original result assuming the differentiability of d(x) (see
Remark 4.5.2).

4.5.2 Optimal rate of convergence in the strongly convex case

Let us consider the strongly convex case σf > 0 in Method I. In the general convergence
estimate (4.4.1), we remark that

λ2iSi
λ2iσf + Si(βi−1 + Si−1σf )

=
λ2i

βi−1 + Si−1σf +
λ2
i

Si
σf

≥ λ2i
βi−1 + Siσf

2Notice that xk+1 and βk+1 in [52] are called zk and βk here, respectively.
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4.5 Optimal rate of convergence for non-smooth problems

holds since λi/Si ≤ 1. In this case, theoretically, the classical method ensures not a worse
convergence rate than the modified counterpart.

We give an optimal convergence result with a simple choice for the parameters λk =
(k+1)/2 and βk ≡ 0 below. Note that every subproblem minx∈Q φk(x) has a unique solution
even if βk ≡ 0 because σ(φk) ∋ βk + Skσf = Skσf > 0 (see the proof of Theorem 4.3.1).

Theorem 4.5.3. Consider a non-smooth problem in the class NSP(g, σf ). Let
{(zk−1, xk, gk, x̂k)}k≥0 be generated by Method I associated with λk = (k + 1)/2 and βk ≡ 0.
Assume that σf > 0 and supk≥0 ∥gk∥∗ ≤Mf < +∞. Then, we have

max{f(x̂k)− f(x∗), min
0≤i≤k

f(xi)− f(x∗)}+ σfξ(xk+1, x
∗) ≤

2M2
f

σdσf (k + 4)
, ∀k ≥ 0

with the classical method, and

f(x̂k)− f(x∗) + σfξ(zk, x
∗) ≤

2M2
f

σdσf

k + log k + 3/2

(k + 1)(k + 2)
= O

(
M2

f

σdσfk

)
, ∀k ≥ 1

with the modified method.

Proof. Since βk ≡ 0 and Sk = (k+1)(k+2)
4 , Theorem 4.4.1 implies the estimate

f(x̂k)− f(x∗) + σfξ(zk, x
∗) ≤ Ck

Sk
=

4Ck

(k + 1)(k + 2)
(4.5.7)

with Ck defined by (4.4.2). The classical method also admits the same estimate replacing
f(x̂k)− f(x∗) by min0≤i≤k f(xi)− f(x∗).

For the classical method, we have

Ck =
1

2σd

k∑
i=0

λ2i
βi−1 + Siσf

∥gi∥2∗ ≤
M2

f

2σdσf

k∑
i=0

λ2i
Si
. (4.5.8)

because of βk ≡ 0 and ∥gi∥∗ ≤Mf . Using the inequality

k∑
i=0

λ2i
Si

=
k∑

i=0

i+ 1

i+ 2
≤ (k + 1)(k + 2)

k + 4
(4.5.9)

(see [22, Proposition 7.3]), we obtain the first assertion.
In the modified method, on the other hand, we have

Ck =
1

2σd

k∑
i=0

λ2iSi
λ2iσf + Si(βi−1 + Si−1σf )

∥gi∥2∗ ≤
M2

f

2σdσf

k∑
i=0

(i+ 1)(i+ 2)

i(i+ 2) + 4

and

k∑
i=0

(i+ 1)(i+ 2)

i(i+ 2) + 4
≤ 1

2
+

k∑
i=1

(i+ 1)(i+ 2)

i(i+ 2)
=

1

2
+

k∑
i=1

(
1 +

1

i

)
≤ 1

2
+ k + (1 + log k)

for all k ≥ 1, which leads (4.5.7) to the second assertion. □
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Let us see another choice of weight parameters ensuring the optimal iteration complexity.
Due to the bound (4.5.8), the classical method with βk ≡ 0 provides the estimate

f(x̂k)− f(x∗) + σfξ(zk, x
∗) ≤ Ck

Sk
≤
M2

f

∑k
i=0

λ2
i

Si

2σdσfSk
.

For instance, the choice λ0 := 1, λk+1 :=
1+
√

1+4λ2
k

2 (k ≥ 0) ensures that

f(x̂k)− f(x∗) + σfξ(zk, x
∗) ≤

2M2
f

σdσf (k + 4)
(4.5.10)

since we have λ2k/Sk = 1 and Sk ≥ (k + 1)(k + 4)/4 by Lemma A.4 given at Appendix.
Let us consider the particular case presented in Example 4.3.3 (2), that is, the classical

method in Method I with the auxiliary functions define by the EMD model (4.3.7). Theo-
rem 4.5.3 above recovers the convergence for the Bach’s averaging (3.1.8) because it coincides
with our approximate solution x̂k. Moreover, the approximate solution x̂k coincides with the

Nedić-Lee’s averaging x̃k (3.1.5) with the choice λ0 := 1, λk+1 :=
1+
√

1+4λ2
k

2 (k ≥ 0). Under

the same assumption as [43] that f is σf -strongly convex on Q and ξ(y, x) ≤ 1
2 ∥x− y∥2 holds

for x, y ∈ Q (recall Section 3.1.1), the estimate (4.5.10) provides the same rate of convergence
as the estimate (3.1.7) (notice that we have σf ∈ σ(f) by Corollary 4.2.3).

When we apply our result for Method I with the auxiliary functions generated by the
DA model (4.3.8), we obtain a new convergence result on the extensions of the DAM and its
variant to the strongly convex case. Note that we do not exploit a multistage procedure and
do not require an upper bound of d(x∗) in contrast to [33].

4.6 Convergence results for structured problems with con-
stants L and δ

In this section, we focus on structured problems in the class SP(mf , σf , σ̄f , L, δ) with the
particular case L(·) ≡ L ≥ 0, δ(·, ·) ≡ δ ≥ 0. In this case, we additionally assume that
L ≥ σ̄fσd; notice that, in view of mf (y;x) ≤ f(x) and ξ(y, x) ≥ σd

2 ∥x− y∥2 for x, y ∈
Q, the inequality (4.2.6) yields 0 ≤ 1

2(L − σ̄fσd) ∥y − x∥2 + δ for every x, y ∈ Q which

forces Diam(Q) ≤
√

2δ/(σ̄fσd − L) if L < σ̄fσd. Note that this case includes the smooth
problems, the composite model, and the inexact oracle model (with constant L(·) and δ(·))
in Example 4.2.8.

4.6.1 Convergence rate of the classical method

Let us see the convergence result of PGMs yielded from the classical method of Method II.
The obtained rate of convergence does not ensure the optimality for smooth problems in the
class F1

L(Q).

Theorem 4.6.1. Consider a structured problem in the class SP(mf , σf , σ̄f , L, δ). Assume
additionally that L(·) = L ≥ 0, δ(·, ·) = δ ≥ 0, and L ≥ σ̄fσd. Let {(zk−1, wk−1, xk, x̂k)}k≥0

be generated by the classical method of Method II with

βk ≡
L− σ̄fσd

σd
, λ0 = 1, λk+1 =

βk + Skσf
βk

. (4.6.1)
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4.6 Convergence results for structured problems with constants L and δ

Then, for every k ≥ 0, we have

f(x̂k)−f(x∗)+σfξ(zk, x∗) ≤
L− σ̄fσd

σd
ℓd(zk;x

∗)min

{(
1−

σfσd
L− σ̄fσd + σfσd

)k

,
1

k + 1

}
+δ.

(4.6.2)
Furthermore, the left hand side of (4.6.2) can be replaced by 1

Sk

∑k
i=0 λkf(wk) − f(x∗) +

σfξ(zk, x
∗) or by min0≤i≤k f(wi)− f(x∗) + σfξ(zk, x

∗).

Proof. By Theorem 4.4.2, the classical method satisfies the estimate (4.4.3) with

Ck =
1

2

k∑
i=0

λi

(
L− σd

(
σ̄f +

βi−1 + Si−1σf
λi

))
∥wi − xi∥2 +

k∑
i=0

λiδ.

Remark that the definitions of λk and βk eliminate the first summation of Ck so that Ck =∑k
i=0 λiδ = Skδ (since

βi−1+Si−1σf

λi
= βi−1 =

L−σ̄fσd

σd
). Moreover, we have for all k ≥ 0 that

Sk = 1 +

(
1 +

σf
β−1

)
Sk−1 ⇒ Sk ≥ max

(
1 + Sk−1,

(
1 +

σf
β−1

)
Sk−1

)
⇒ Sk ≥ max

{
k + 1,

(
1−

σf
β−1 + σf

)−k
}
.

Therefore, the assertion follows from Theorem 4.4.2. □

In the case L > σ̄fσd, the right hand side of the estimate (4.6.2) converges to δ. When
L = σ̄fσd (i.e., βk ≡ 0) and δ = 0, the estimate (4.6.2) says that x̂0 is an optimal solution.
This is an obvious assertion because f(x) = mf (y, x), x, y ∈ Q follows from (4.2.6) and
thus the conditions (B2) and (B3) imply x̂0 ∈ Argminx∈Q ψ0(x) = Argminx∈Q λ0mf (x0, x) =
Argminx∈Q f(x).

Let us see our result in particular examples.

Example 4.6.2 (Composite structure). Consider the composite problem minx∈Q[f(x) ≡
f0(x)+Ψ(x)] with f0 ∈ F1

L(Q) in the Euclidean setting d(x) = 1
2 ∥x− x0∥22. This corresponds

to the case σd = 1, σ̄f = σf0 , σf = σf0 + σΨ , and δ = 0 as Example 4.2.8 (iii).
Consider the classical method of Method II with the choice of parameters in Theo-

rem 4.6.1. In this case, the EMD model (4.3.7) and the hybrid model (4.3.9) yields the
primal gradient method (3.2.1) and the dual one (3.2.2), respectively (Example 4.3.4 (2b)).
In the non strongly convex case σf = 0, Theorem 4.6.1 gives the estimate

min
0≤i≤k

f(wi)− f(x∗) ≤ Lℓd(zk;x
∗)

k + 1
≤
L ∥x0 − x∗∥22
2(k + 1)

recovering the known estimate (3.2.3) for them. This estimate also holds for the DA model
(4.3.8) reducing the number of subproblems compared with the hybrid model (cf. Exam-
ple 4.3.4 (2b)).

In the strongly convex case σf > 0, Theorem 4.6.1 yields the linear convergence

min

{
f(x̂k)− f(x∗), min

0≤i≤k
f(wi)− f(x∗)

}
+ σfξ(zk, x

∗) ≤ (L− σf0)ℓd(zk;x
∗)

(
1−

σf
L+ σΨ

)k

≤
L− σf0

2

(
1−

σf
L+ σΨ

)k

∥x0 − x∗∥22 .

(4.6.3)
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In particular the primal gradient method ensures this estimate without knowing σ̄f and σf .
For the primal gradient method, we have another estimate (3.2.4) by Nesterov. Here we show
that our linear convergence factor 1− σf

L+σΨ
is better than the one in (3.2.4).3 Now since we

have L ≥ σf0 and σf = σf0 + σΨ , we always have

1−
σf

L+ σΨ
=
L− σf0
L+ σΨ

≤
L− σf0
σf0 + σΨ

≤ L

σf
.

Therefore, it suffices to consider the case L/σf ≥ 1/2, that is, 2L ≥ σf . In this case, we have

4L ≥ L+ 2L ≥ L+ σf ≥ L+ σΨ

and thus 1− σf

L+σΨ
≤ 1− σf

4L holds. This shows the claim. □

Example 4.6.3 (Inexact oracle model). Suppose that the objective function f is equipped
with a (δ, L, µ)-oracle in the Euclidean setting d(x) = 1

2 ∥x− x0∥22. In this case, we have
σf = σ̄f = µ and δ(y, x) ≡ δ as Example 4.2.8 (v). Theorem 4.6.1 states that the classical
method of Method II setting

βk ≡ L− µ, λ0 = 1, λk+1 =
L− µ+ Skµ

L− µ

yields the estimate

min
0≤i≤k+1

f(wi)− f(x∗) + σfξ(zk, x
∗) ≤ (L− µ)ℓd(zk;x

∗)min

{(
1− µ

L

)k
,

1

k + 1

}
+ δ.

Recall from Example 4.3.4 (3) that the EMDmodel (4.3.7) and the hybrid model (4.3.9) yields
the primal gradient method (3.2.5) and the dual gradient method (3.2.6), respectively. Also
recall that our choices of {λk} and {βk} were not equivalent to (3.2.8) analyzed in [17] for the
dual gradient method. Comparing the above estimate with (3.2.7), our choice of parameters
ensure smaller upper bound in view of L − µ ≤ L and ℓd(zk;x

∗) ≤ 1
2 ∥x0 − x∗∥22. Again the

primal gradient method ensure our result without knowing µ. Using the DA model, we can
reduce the number of subproblems of the dual gradient method preserving the convergence
property as remarked for the composite structure (Example 4.3.4 (2b)). □

4.6.2 Optimal rate of convergence for the modified method

The modified method of Method II for the structured problem in the particular case L(·) =
L ≥ 0, δ(·, ·) = δ ≥ 0 can be analyzed as follows. Differently from the classical method, it
achieves the optimal convergence rate for the class F1

L(Q). The result below further implies
efficient rates for the CGMs, too.

Theorem 4.6.4. Consider a structured problem in the class SP(mf , σf , σ̄f , L, δ). Assume
in addition that L(·) = L ≥ 0, δ(·, ·) = δ ≥ 0, and L > σ̄fσd.
(i) Let {(zk−1, wk−1, xk, x̂k)}k≥0 be generated by the modified method of Method II with

βk ≡
L− σ̄fσd

σd
, λ0 = 1, λ2k+1 =

(
1 + Sk

σfσd
L− σ̄fσd

)
(λk+1 + Sk) (k ≥ 0) (4.6.4)

3Remark that this improvement does not imply that our estimate (4.6.3) is better than the Nesterov’s one
(3.2.4); their comparison will depend on the parameters.
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(i.e., λk+1 is determined as the largest root of the above quadratic equation). Then, for every
k ≥ 0, we have

f(x̂k)− f(x∗) + σfξ(zk, x
∗) ≤

L− σ̄fσd
σd

ℓd(zk;x
∗)min

{
4

(k + 2)2
,

(
1 +

1

2

√
σfσd

L− σ̄fσd

)−2k
}

+min

{
1

3
k +

1

6
log(k + 2) + 1, 1 +

√
L− σ̄fσd
σfσd

}
δ.

(ii) Suppose further that σf = 0 and Q is bounded. Let {(zk−1, wk−1, xk, x̂k)}k≥0 be generated
by the modified method of Method II with βk ≡ 0, λk := (k+1)/2 as a CGM. Then, for every
k ≥ 0, we have

f(x̂k)− f(x∗) ≤ 2Lmax0≤i≤k ∥wi − zi−1∥2

k + 4
+
k + 3

3
δ.

Proof. By Theorem 4.4.2, we have the estimate (4.4.3) with

Ck =
1

2

k∑
i=0

Si

(
L(xi)− σd

(
σ̄f +

Si(βi−1 + Si−1σf )

λ2i

))
∥x̂i − xi∥2 +

k∑
i=0

Siδ(xi, x̂i)

=
1

2

k∑
i=0

λ2i
Si

(
L− σd

(
σ̄f +

Si(βi−1 + Si−1σf )

λ2i

))
∥wi − zi−1∥2 +

k∑
i=0

Siδ.

(i) The recurrence of {λk} can be rewritten as

λ2k+1 = β−1
k (Skσf + βk)Sk+1 ⇐⇒ L− σ̄fσd =

σd
λ2k+1

(Skσf + βk)Sk+1

⇐⇒ L = σd

(
σ̄f +

Sk+1(βk + Skσf )

λ2k+1

)
.

This eliminates the first summation in Ck above so that we have Ck =
∑k

i=0 Siδ. Therefore,
the estimate (4.4.3) implies

f(x̂k)− f(x∗) + σfξ(zk, x
∗) ≤

L− σ̄fσd
σd

ℓd(zk;x
∗) · 1

Sk
+

∑k
i=0 Siδ

Sk
.

It remains to estimate 1/Sk and
∑k

i=0 Si/Sk which is left to Lemmas A.1 to A.4, given at
Appendix.
(ii) Letting βk = 0, and σf = 0 in Theorem 4.4.2 with Ck described above and using the
inequality (4.5.9) establish

f(x̂k)− f(x∗) ≤ Ck

Sk
=
L
∑k

i=0
λ2
i

Si
∥wi − zi−1∥2

2Sk
+

∑k
i=0 Siδ

Sk
. (4.6.5)

Therefore, the choice λk = (k + 1)/2 yields the estimate

f(x̂k)− f(x∗) ≤ 2Lmax0≤i≤k ∥wi − zi−1∥2

k + 4
+
k + 3

3
δ.

□
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Let us discuss the above result for particular classes of structured problems.

Example 4.6.5 (PGMs for composite/smooth problems). Consider the composite problem
minx∈Q[f(x) ≡ f0(x) + Ψ(x)] in the Euclidean setting d(x) = 1

2 ∥x− x0∥22. We have σd = 1,
σ̄f = σf0 , σf = σf0 +σΨ , and δ = 0 (Example 4.2.8 (iii)). By Theorem 4.6.4 (i), the modified
method of Method II with the parameters (4.6.4) ensures the estimate

f(x̂k)−f(x∗)+
σf
2

∥zk − x∗∥22 ≤
(L− σf0) ∥x0 − x∗∥22

2
min

{
4

(k + 2)2
,

(
1 +

1

2

√
σf

L− σf0

)−2k
}
.

This estimate resembles the one (3.2.17) of the Nesterov’s accelerated method. We remark
that Method II does not include the Nesterov’s accelerated method [53] as a particular in-
stance in general.

When Ψ(x) ≡ 0 (then σΨ = 0 and σf = σf0), our method attains the optimal iteration
complexity for the smooth problems. In fact, since log(1 + x) ≥ 1

2x holds for x ∈ [0, 1], we
obtain

f(x̂k)− f(x∗) ≤
(L− σf ) ∥x0 − x∗∥22

2
min

{
4

(k + 2)2
, exp

(
−k
2

√
σf
L

)}
.

Therefore, x̂k is an ε-solution whenever

k ≥ min


√

2(L− σf ) ∥x0 − x∗∥22
ε

− 2, 2

√
L

σf
log

(
(L− σf ) ∥x0 − x∗∥22

2ε

) .

Recall from Example 4.3.4 (1) that particular instances of Method II include the Nes-
terov’s modified method (3.2.9) and Tseng’s APG methods (3.2.10), (3.2.11). Our result
therefore gives extensions of them to the strongly convex case ensuring the optimal iteration
complexity. □

Example 4.6.6 (PGMs for inexact oracle model). Suppose that the objective function f(x) is
equipped with a (δ, L, µ)-oracle (2.4.14) in the Euclidean setting d(x) = 1

2 ∥x− x0∥22 , σd = 1.
Theorem 4.6.4 (i) with the correspondence σf = σ̄f = µ yields the estimate

f(x̂k)− f(x∗) +
σf
2

∥zk − x∗∥22 ≤ (L− µ)ℓd(zk;x
∗)min

{
4

(k + 2)2
,

(
1 +

1

2

√
µ

L− µ

)−2k
}

+min

{
1

3
k +

1

6
log(k + 2) + 1, 1 +

√
L− µ

µ

}
δ

for all k ≥ 0, which is slightly better than the estimate (3.2.18) for the fast gradient method
[17, Algorithm 3] in view of (L − µ)ℓd(zk;x

∗) ≤ Ld(x∗) and µ
L ≤ µ

L−µ . We remark that the
fast gradient method does not arise as a particular instance of Method II in general. □

Example 4.6.7 (Convergence results for CGMs). Let us compare Theorem 4.6.4 (ii) with
known estimates for existing CGMs reviewed in Section 3.2.3. Note that Theorem 4.6.4 (ii)
yields the estimate

f(x̂k)− f(x∗) ≤ 2LDiam(Q)2

k + 4
+
k + 3

3
δ, ∀k ≥ 0.
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For the inexact oracle model, it is similar to the estimate of the classical CGM (3.2.19)
shown by Freund and Grigas [22, Section 5.2.1]. In fact, the general bound (4.6.5) of the
CGM resembles the bound (53) in [22].

Our result for the composite problems as well as the smooth ones yields the the same

upper bound 2LDiam(Q)2

k+4 as the one (3.2.20) of the classical CGM. For the smooth problems,

Method II with the choice βk ≡ 0 and λk = k+2
2 includes the Lan’s CGMs (3.2.21) and

(3.2.22) (cf. Example 4.3.4 (1)) recovering the estimate (3.2.23). □

4.7 Optimal/nearly optimal rates of convergence for weakly
smooth problems

In this section, we consider structured problems in the class SP(mf , σf , σ̄f , L, δ) in the par-
ticular case

δ(y, x) =
M(y)

ρ
∥y − x∥ρ where M(·) ≥ 0, ρ ∈ [1, 2),

which include convex problems involving weakly smooth functions in the class Fρ−1
M (Q) (Ex-

ample 4.2.8 (ii)) or involving a mixed smoothness (Example 4.2.8 (iv)). We excluded the
case ρ = 2 since it reduces the situation δ(y, x) = 0 which has been already discussed in the
previous section.

In particular, we aim to establish the iteration complexities (2.4.7) for the PGMs and
(2.4.8) for the CGMs via the modified method of Method II for weakly smooth problems.
Complexity results for PGMs in the non strongly and the strongly convex cases will be given
in Sections 4.7.1 and 4.7.2, respectively. In Section 4.7.3, we finally prove optimal/nearly
optimal convergence results for CGMs.

We at first prepare the following lemma for the analysis of PGMs.

Lemma 4.7.1. Consider a structured problem in the class SP(mf , σf , σ̄f , L, δ). Assume that

δ(y, x) = M(y)
ρ ∥y − x∥ρ , ρ ∈ [1, 2), M(·) ≥ 0. Let {(zk−1, wk−1, xk, x̂k)}k≥0 be generated by

the modified method of Method II with weight parameters {λk}k≥0 and scaling parameters

{βk}k≥−1. Put αk := L(xk)− σd

(
σ̄f +

Sk(βk−1+Sk−1σf )

λ2
k

)
. If αi < 0 for each 0 ≤ i ≤ k, then

we have

f(x̂k)− f(x∗) + σfξ(zk, x
∗) ≤ βkℓd(zk;x

∗)

Sk
+

(2− ρ)max0≤i≤kM(xi)
2

2−ρ

2ρSk

k∑
i=0

Si

(−αi)
ρ

2−ρ

.

Proof. Note that the function g(r) = ar2 + brρ for r ≥ 0, a < 0, b ∈ R satisfies maxr≥0 g(r) =
2−ρ
2ρ (−2a)

−ρ
2−ρ (ρb)

2
2−ρ . Hence, Theorem 4.4.2 concludes that

f(x̂k)− f(x∗) + σfξ(zk, x
∗) ≤ βkℓd(zk;x

∗)

Sk
+

1

Sk

k∑
i=0

Si

(
1

2
αi ∥x̂i − xi∥2 +

M(xi)

ρ
∥x̂i − xi∥ρ

)

≤ βkℓd(zk;x
∗)

Sk
+

1

Sk

k∑
i=0

Si ×
2− ρ

2ρ
(−αi)

−ρ
2−ρM(xi)

2
2−ρ ,

which proves the assertion. □
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4.7.1 Optimal rate of convergence in the non strongly convex case

Let us deduce a convergence result of PGMs given by the modified method of Method II for
the non strongly convex case σf = σ̄f = 0. The result with ρ = 1 is closely related to the
deterministic versions of [25, Proposition 8] and [12, Corollary 1].

Theorem 4.7.2. Consider a structured problem in the class SP(mf , σf , σ̄f , L, δ). Assume

additionally that L(·) = L ≥ 0, σf = σ̄f = 0, and δ(y, x) = M(y)
ρ ∥y − x∥ρ for ρ ∈ [1, 2),

M(·) ≥ 0. Let {(zk−1, wk−1, xk, x̂k)}k≥0 be generated by the modified method of Method II
with

λk :=
k + 1

2
, βk :=

L

σd
+

γ

σd
(k + 3)

3
2
(2−ρ), γ > 0.

Then, for every k ≥ 0, we have

f(x̂k)− f(x∗) ≤ 4Lℓd(zk;x
∗)

σd(k + 1)(k + 2)
+

[
4γℓd(zk;x

∗)

σd
+

max0≤i≤kM(xi)
2

2−ρ

3ργ
ρ

2−ρ

]
(k + 3)

3
2
(2−ρ)

(k + 1)(k + 2)
.

Proof. We apply Lemma 4.7.1 to prove the assertion. Note that

βk
Sk

=
4L

σd(k + 1)(k + 2)
+

4γ(k + 3)
3
2
(2−ρ)

σd(k + 1)(k + 2)
(4.7.1)

and αk in Lemma 4.7.1 becomes now αk = − L
k+1 − γ (k+2)

3
2 (2−ρ)+1

k+1 ≤ −γ (k+2)
3
2 (2−ρ)+1

k+1 < 0.
Furthermore, we have

1

Sk

k∑
i=0

Si

(−αi)
ρ

2−ρ

≤ 1

Sk

k∑
i=0

(i+ 1)
ρ

2−ρ
+1

4γ
ρ

2−ρ (i+ 2)
3
2
ρ+ ρ

2−ρ
−1

≤ 1

4γ
ρ

2−ρSk

k∑
i=0

(i+ 2)2−
3
2
ρ

≤ 1

4γ
ρ

2−ρSk

2

3(2− ρ)
(k + 3)3−

3
2
ρ =

2(k + 3)
3
2
(2−ρ)

3(2− ρ)γ
ρ

2−ρ (k + 1)(k + 2)
,

(4.7.2)

where the second and the third inequalities are due to i + 1 ≤ i + 2 and the fact
∑k

i=0(i +
2)q ≤ 1

1+q (k + 3)1+q, ∀q > −1, respectively. Consequently, the theorem follows by applying
Lemma 4.7.1 with the inequalities (4.7.1) and (4.7.2). □

Notice that we need the parameter ρ to define βk but not the M(·). Now let us observe
an efficient choice for γ. Suppose that M(·) ≡M . Using ℓd(zk;x

∗) ≤ d(x∗) and the fact that

the function g(γ) = aγ + b
γp (a, b, p > 0) attains its minimum at γ∗ = (pb/a)

1
p+1 on (0,∞)

with g(γ∗) = (p+ 1)p
−p
p+1a

p
p+1 b

1
p+1 , the choice

γ = γ∗ :=

(
ρ

2− ρ

M
2

2−ρ

3ρ

σd
4d(x∗)

) 2−ρ
2

=M

(
σd

12(2− ρ)d(x∗)

) 2−ρ
2
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makes the estimate of Theorem 4.7.2 as follows:

f(x̂k)− f(x∗) ≤ 4Ld(x∗)

σd(k + 1)(k + 2)

+
2

2− ρ

(
ρ

2− ρ

)− ρ
2
(
4d(x∗)

σd

) ρ
2

(
M

2
2−ρ

3ρ

) 2−ρ
2

(k + 3)
3
2
(2−ρ)

(k + 1)(k + 2)

=
4Ld(x∗)

σd(k + 1)(k + 2)
+

2(2
√
3)ρ

3ρ(2− ρ)
2−ρ
2

M

(
d(x∗)

σd

) ρ
2 (k + 3)

3
2
(2−ρ)

(k + 1)(k + 2)
.

(4.7.3)

The case M = 0 matches the optimal convergence rate for the smooth problems.

Let us see that the case L = 0 in (4.7.3) attains the optimal iteration complexity (2.4.7)
for the weakly smooth problems (f ∈ Fρ−1

M (Q)) in the non strongly convex case. Relaxing
k + 3 ≤ 3(k + 1), the estimate (4.7.3) with L = 0 yields

f(x̂k)− f(x∗) ≤ 21+ρ · 32−ρ

ρ(2− ρ)
2−ρ
2

M

(
d(x∗)

σd

) ρ
2

(k + 1)−
3ρ−2

2 .

Therefore, we obtain f(x̂k)− f(x∗) ≤ ε whenever

k + 1 ≥ c(ρ)

(
d(x∗)

σd

) ρ
3ρ−2

(
M

ε

) 2
3ρ−2

where

c(ρ) =

(
21+ρ · 32−ρ

ρ(2− ρ)
2−ρ
2

) 2
3ρ−2

.

It matches the optimal iteration complexity (2.4.7). One can verify that c(ρ) is decreasing
on [1, 2), c(1) = 144, and limρ→2 c(ρ) = 2. In fact, c′(ρ) is given by

c′(ρ) = − 6c(ρ)

(3ρ− 2)2
log a(ρ)− c(ρ)

(3ρ− 2)ρ

(
2− ρ+ 2ρ log

3

2
− ρ log(2− ρ)

)

where a(ρ) = 2ρ+132−ρ

ρ(2−ρ)
2−ρ
2

. It is easy to see 2− ρ+2ρ log 3
2 > 0, log(2− ρ) ≤ 0, and log a(ρ) ≥ 0

for ρ ∈ [1, 2) showing that c′(ρ) < 0.

This result is more of theoretical interest only because the attainment of the optimal
iteration complexity above requires to knowM and ρ to determine the parameters {(βk, λk)},
in contrast to the Nesterov’s universal gradient method [54]. One of their differences is that
our result ensures the convergence f(x̂k) → f(x∗) with the optimal rate while the Nesterov’s
method [54] ensures only lim supk→∞(f(x̂k) − f(x∗)) ≤ ε

2 for a tolerance parameter ε > 0
fixed in the method.
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4.7.2 Optimal rate of convergence in the strongly convex case

Now we show a convergence result of PGMs in the strongly convex case σf > 0. We use the
following notation for our claim

P (k) :=



(
p+ 2− 2ρ

2−ρ

)−1
(k + 1)

− 3ρ−2
2−ρ : p+ 1 > 3ρ−2

2−ρ ,

1 + log k

(k + 1)p+1
: p+ 1 = 3ρ−2

2−ρ ,

1−
(
p+ 2− 2ρ

2−ρ

)−1

(k + 1)p+1
: p+ 1 < 3ρ−2

2−ρ .

(4.7.4)

Theorem 4.7.3. Consider a structured problem in the class SP(mf , σf , σ̄f , L, δ). Assume

additionally that L(·) = L ≥ 0, σf > 0, and δ(y, x) = M(y)
ρ ∥y − x∥ρ for ρ ∈ [1, 2), M(·) ≥ 0.

Let {(zk−1, wk−1, xk, x̂k)}k≥0 be generated by the modified method of Method II with

λk :=
1

p+ 1
(k + 1)p, βk :=

(
L

σd
+ β

)
(k + 2)p−1

where p ≥ 1 and β ≥ 0 with σdσ̄f + pL+ (p+ 1)σdβ > 0. Then, for every k ≥ 0, we have

f(x̂k)− f(x∗) + σfξ(zk, x
∗) ≤

(
L

σd
+ β

)
(p+ 1)2ℓd(zk;x

∗)
(k + 2)p−1

(k + 1)p+1

+
(p+ 1)(2− ρ)max0≤i≤kM(xi)

2
2−ρ

2ρ(σdσ̄f + pL+ (p+ 1)σdβ)
ρ

2−ρ

1

(k + 1)p+1

+
3p+1(2− ρ)max0≤i≤kM(xi)

2
2−ρ

2ρ

(
2p−1(p+ 1)2

σdσf

) ρ
2−ρ

P (k),

where P (k) is defined by (4.7.4).

Proof. Let us apply Lemma 4.7.1. Firstly, note that βk is non-decreasing and 1
(p+1)2

(k +

1)p+1 ≤ Sk ≤ 1
(p+1)2

(k + 2)p+1. We then have

βk
Sk

≤
(
L

σd
+ β

)
(p+ 1)2

(k + 2)p−1

(k + 1)p+1
= O(k−2). (4.7.5)

Secondly, the inequalities Sk

λ2
k
≥ 1

(k+1)p−1 and
SkSk−1

λ2
k

≥ 1
(p+1)2

kp+1

(k+1)p−1 ≥ k2

2p−1(p+1)2
for k ≥ 1

imply

−αk := σd

(
σ̄f +

Sk(βk−1 + Sk−1σf )

λ2k

)
− L ≥ σdσ̄f + βσd +

σdσf
2p−1(p+ 1)2

k2 > 0, k ≥ 1.

Therefore, we obtain

Sk

(−αk)
ρ

2−ρ

<
1

(p+ 1)2

(
2p−1(p+ 1)2

σdσf

) ρ
2−ρ (k + 2)p+1

k
2ρ
2−ρ

≤ 3p+1

(p+ 1)2

(
2p−1(p+ 1)2

σdσf

) ρ
2−ρ

k
p+1− 2ρ

2−ρ

for all k ≥ 1. Combining with S0

(−α0)
ρ

2−ρ
= 1

(p+1)(σdσ̄f+pL+(p+1)σdβ)
ρ

2−ρ
yields that

1

Sk

k∑
i=0

Si

(−αi)
ρ

2−ρ

≤ p+ 1

(σdσ̄f + pL+ (p+ 1)σdβ)
ρ

2−ρ

1

(k + 1)p+1
+3p+1

(
2p−1(p+ 1)2

σdσf

) ρ
2−ρ

P (k),

(4.7.6)
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where the factor P (k) is due to the following inequality:

k∑
i=1

iq ≤


1

1+q (k + 1)q+1 : q > −1,

1 + log k : q = −1,
1− 1

1+q : q < −1.

Consequently, the assertion follows from Lemma 4.7.1 with the inequalities (4.7.5) and (4.7.6).
□

Notice that we do not need ρ and M(·) in the definition of the parameters λk, βk; the
result holds for all acceptable ρ ∈ [1, 2). If we further have p+ 1 > 3ρ−2

2−ρ , then P (k) has the
best rate of convergence for a fixed ρ. Now let us see the above upper bound in the case
L = 0, σf = σ̄f > 0, M(·) =M, β = 0, p+ 1 > 3ρ−2

2−ρ :

f(x̂k)− f(x∗) + σfξ(zk, x
∗)

≤ (p+1)(2−ρ)M
2

2−ρ

2ρ(σdσf )
ρ

2−ρ

1
(k+1)p+1

+3p+1(2−ρ)
2ρ M

2
2−ρ

(
2p−1(p+1)2

σdσf

) ρ
2−ρ
(
p+ 2− 2ρ

2−ρ

)−1
(k + 1)

− 3ρ−2
2−ρ .

Since this bound is of O
(
c(p, ρ) M2/(2−ρ)

(σdσf )ρ/(2−ρ)k
− 3ρ−2

2−ρ

)
for a continuous function c(p, ρ), it

achieves the optimal complexity (2.4.7) for the strongly convex case. In contrast to the op-
timal method in [45], we do not employ restarting the method and do not require constants
M and R ≥ d(x∗) in advance4 to ensure the optimality.

Let us consider the non-smooth case ρ = 1, σ̄f = σf > 0. Then, taking p = 1 and β = 0
yields λk = (k + 1)/2, βk−1 = L/σd, and

f(x̂k)− f(x∗) + σfξ(zk, x
∗) ≤ 4Lℓd(zk;x

∗)

σd(k + 1)2
+

max0≤i≤kM(xi)
2

(σdσf + L)(k + 1)2
+

18max0≤i≤kM(xi)
2

σdσf (k + 1)
.

This result resembles the ones [25, Proposition 9] and [12, Corollary 2] in the deterministic
case.

4.7.3 Optimal/nearly optimal rate of convergence of conditional gradient
methods

We finally consider the case of conditional gradient methods: βk ≡ 0, σf = σ̄f = 0. This
case can be analyzed without Lemma 4.7.1.

Theorem 4.7.4. Consider a structured problem in the class SP(mf , σf , σ̄f , L, δ). Assume
additionally that L(·) = L ≥ 0, σf = σ̄f = 0, and δ(y, x) = M

ρ ∥y − x∥ρ for ρ ∈ [1, 2), M ≥ 0.
Then, the modified method of Method II for the problem with λk = (k + 1)/2 and βk ≡ 0
generates a sequence {x̂k}k≥0 ⊂ Q satisfying

f(x̂k)− f(x∗) ≤ 2LDiam(Q)2

k + 4
+

2ρ+1MDiam(Q)ρ

ρ(3− ρ)(k + 2)ρ−1
(4.7.7)

for every k ≥ 0.
4As is indicated in [45], an obvious upper bound of d(x∗) can be obtained if ∇f(x∗) = 0 and we know M

for the weakly smooth problems (f ∈ Fρ−1
M (Q)) in the Euclidean setting d(x) = 1

2
∥x− x0∥22 : The inequality

d(x∗) ≤ 1
2
( 2M
ρσf

)2/(2−ρ) follows since we have
σf

2
∥x0 − x∗∥22 ≤ f(x0)− f(x∗) ≤ M

ρ
∥x0 − x∗∥ρ2 (recall the strong

convexity and (4.2.6)).
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Proof. Theorem 4.4.2 yields that f(x̂k)− f(x∗) ≤ Ck/Sk with Sk = (k + 1)(k + 2)/4 and

Ck =

k∑
i=0

Si

(
L

2
∥x̂i − xi∥2 +

M

ρ
∥x̂i − xi∥ρ

)

=

k∑
i=0

(
L

2

λ2i
Si

∥wi − zi−1∥2 +
M

ρ

λρi
Sρ−1
i

∥wi − zi−1∥ρ
)

(see Remark 4.4.3). Using the inequality (4.5.9) and

k∑
i=0

λρi
Sρ−1
i

=
1

22−ρ

k∑
i=0

i+ 1

(i+ 2)ρ−1
≤ 1

22−ρ

k∑
i=0

(i+ 1)2−ρ ≤ 1

22−ρ(3− ρ)
(k + 2)3−ρ

(the first and the second inequalities are due to i + 1 ≤ i + 2 and the fact
∑k

i=0(i + 1)q ≤
1

1+q (k + 2)1+q for q ≥ 0, respectively), we conclude that

f(x̂k)− f(x∗) ≤ Ck

Sk
≤ 2LDiam(Q)2

k + 4
+

2ρMDiam(Q)ρ

ρ(3− ρ)

(k + 2)2−ρ

k + 1
.

The estimate (4.7.7) now follows from 1
k+1 ≤ 2

k+2 for k ≥ 0. □

Remark 4.7.5. We can also obtain the estimate (4.7.7) for the classical CGM arranged for
the class SP(mf , 0, 0, L, δ) with affine mf (y; ·)’s (refer Remark 4.4.3). In fact, taking the
initial point x0 ∈ Argminx∈Qmf (x−1;x) for an arbitrary x−1 ∈ Q, the (arranged) classical

CGM admits the estimate (4.4.6). Then, using f(x0) − f(x∗) ≤ f(x0) −mf (x−1;x0)
(4.2.6)

≤
L
2Diam(Q)2 + M

ρ Diam(Q)ρ and δ(xk−1, xk) =
M
ρ ∥xk − xk−1∥ρ

(3.2.19)
= M

ρ

λρ
k

Sρ
k
∥xk−1 − zk−1∥ρ ≤

M
ρ

λρ
k

Sρ
k
Diam(Q)ρ for k ≥ 1, we arrive at

f(x̂k)− f(x∗) ≤ 1

Sk

(
L

2
Diam(Q)2

k∑
i=0

λ2i
Si

+
M

ρ
Diam(Q)ρ

k∑
i=0

λρi
Sρ−1
i

)
.

Hence, as the same way as the proof of Theorem 4.7.4, the estimate (4.7.7) holds when
λk = k+1

2 (namely, τk = 2
k+3). This result in the case L = 0 is very similar to a known result

for the classical CGM (see [14, Proposition 1.1] and [55]). □

Notice that the choice λk = (k + 1)/2 and βk ≡ 0 are independent of L,M , and ρ.
Theorem 4.7.4 applied to the weakly smooth problem minx∈Q f(x), f ∈ Fν

M (Q), ν ∈ (0, 1]
ensures the convergence

f(x̂k)− f(x∗) ≤ 22+νMDiam(Q)1+ν

(1 + ν)(2− ν)(k + 2)ν
, ∀k ≥ 0.

Therefore, we obtain an ε-solution whenever

k + 2 ≥
(
22+νMDiam(Q)1+ν

(1 + ν)(2− ν)ε

) 1
ν
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which matches the known iteration complexity (2.4.8) of the classical CGM for weakly smooth
problems. Recall that this is optimal for the smooth problems (ν = 1) in view of the linear
optimization oracle [35] and nearly optimal for the weakly smooth problems (cf. Section 2.4).

When we employ the EMD model (4.3.7) or the DA model (4.3.8) in Theorem 4.7.4, the
obtained CGMs match particular cases of Lan’s CGMs as mentioned in Example 4.3.4 (1).
Since the convergence rates for Lan’s CGMs was analyzed only for smooth problems in [35],
our result provides a generalization of them for the weakly smooth problems.

69



Chapter 5

Conclusion and Further Remarks

In this thesis, we proposed Methods I and II based on Properties A and B as a unify-
ing framework of subgradient-based methods for ‘structured’ convex optimization problems,
namely, for the non-smooth and the structured problems introduced in Section 4.2.2. We
demonstrated a general scheme of construction of PGMs and CGMs where some particular
instances yield existing methods. Our analysis was performed in a unified way and derived
optimal complexity results of the PGMs and nearly optimal one of the CGMs for various
classes of convex optimization problems.

Our unification comes essentially from Property A (and B). In the next section, we observe
a connection between Property A and Nesterov’s estimate sequence technique [48, 49]. This
connection, perhaps, enrich the understanding of Property A.

We finally discuss further considerable research directions based on our unifying frame-
work in Section 5.2.

5.1 Relation to Nesterov’s estimate sequence

Nesterov’s estimate sequence approach [48, 49] is a powerful methodology to construct efficient
PGMs especially for the smooth problems (see also [2, 4] for related or extensive works). A
variant of this approach [50, 53], based on the relation (Rk), was exploited in this thesis. Here
we observe that Property A is closely related to the Nesterov’s estimate sequence framework.

Consider a convex optimization problem minx∈Q f(x) (It will be helpful to consider
the smooth problems so that mf (y;x) = f(y) + ⟨∇f(y), x− y⟩ + σfξ(y, x)). For a se-
quence of (auxiliary) functions {Φk(x)}k≥0 and positive real numbers {Tk}k≥0, the sequence
{(Φk(x), Tk)}k≥0 is called an estimate sequence [49, Definition 2.2.1] if Tk → 0 and

Φk(x) ≤ (1− Tk)f(x) + TkΦ0(x), ∀x ∈ E, ∀k ≥ 0. (5.1.1)

For a sequence {φk(x)}k≥0 of (auxiliary) functions, let us consider Property A to deal with
a relation to the estimate sequence. For simplicity, we consider weight parameters {λk}k≥0

and scaling parameters {βk}k≥−1 such that

λ0 = 1, βk ≡ 1.

Given weight parameters {λk}k≥0, denote τk := λk+1/Sk+1, T0 := 1, Tk :=
∏k−1

i=0 (1− τi) and
Φk(x) := φk(x)/Sk. Then we have 1−τk = Sk/Sk+1 and Tk = 1/Sk because of the recurrence
(1− τk)/Sk = 1/Sk+1.

We observe that, for the sequence {(Φk(x), Tk)} = {(φk(x)/Sk, 1/Sk)}, the condition (A3)
is closely related to the estimate sequence (5.1.1) and the condition (A2) is connected to the
formula of the construction of estimate sequences.
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5.1 Relation to Nesterov’s estimate sequence

The DA update (4.3.3), namely, φ−1(x) = β−1d(x), φk+1(x) = φk(x)+λk+1mf (xk+1;x)+
βk+1d(x)− βkd(x), is now equivalent to

Φ0(x) = mf (x0;x) + d(x),

Φk+1(x) = (1− τk)Φk(x) + τkmf (xk+1;x).

The update formula corresponds to the Nesterov’s construction (see eq. (2.2.3) in [49]) of
estimate sequence. Moreover, the EMD update (4.3.7), namely, φ−1(x) = β−1ℓd(z−1;x),
φk+1(x) = φk(zk)+λk+1mf (xk+1;x)+βk+1d(x)−βkℓd(zk;x)+Skσfξ(zk, x) can be rewritten
as

Φ0(x) = mf (x0;x) + ξ(z−1, x), (5.1.2)

Φk+1(x) = (1− τk)Φk(zk) + τkmf (xk+1;x) + (Tk+1 + (1− τk)σf )ξ(zk, x)

= (1− τk)[Φk(zk) + γkξ(zk, x)] + τkmf (xk+1;x), γk := Tk + σf ,

which resembles with the second equation in [49, p. 74] (observe further that γk+1 = (1 −
τk)γk + τkσf holds). A relation between the condition (A2) and the estimate sequence can
be seen in a similar manner as the EMD case.

The relation (Rk) Skf(x̂k) ≤ minx∈Q φk(x) is equivalent to f(x̂k) ≤ minx∈QΦk(x) which
corresponds to [49, eq. (2.2.2)].

Let us finally see the condition (A3). We have

min
x∈Q

Φk(x)
(A3)

≤ min
x∈Q

{
1

Sk

k∑
i=0

λimf (xi;x) + Tkℓd(zk;x)

}

≤ min
x∈Q

{
1

Sk

[
k∑

i=1

λif(x) +mf (x0;x)

]
+ Tkd(zk;x)

}
(∵ f(x) ≥ mf (y;x))

= min
x∈Q

{∑k
i=1 λi
Sk

f(x) + Tk[mf (x0;x) + ℓd(zk;x)]

}
= min

x∈Q
{(1− Tk)f(x) + Tk[mf (x0;x) + ℓd(zk;x)]}

≤ min
x∈Q

{(1− Tk)f(x) + Tk[mf (x0;x) + d(x)]}

≤ min
x∈Q

{(1− Tk)f(x) + Tk[mf (x0;x) + ξ(z−1, x)]} (∵ ℓd(z−1, x) ≥ 0, ∀x ∈ Q)

≤ min
x∈Q

{(1− Tk)f(x) + TkΦ0(x)]} ,

where the last inequality follows from (A2) with k = −1 (cf. (5.1.2)). Consequently, (A3)
yields

min
x∈Q

Φk(x) ≤ min
x∈Q

{(1− Tk)f(x) + TkΦ0(x)}

which is closely related to the definition (5.1.1) of the estimate sequence.

Our unified analysis taken in Section 4.4 was based on the Nesterov’s variant [50, 53] of
the estimate sequence. The crucial contribution in view of the unifying framework would be
Theorem 4.3.1 which allowed not only the DA model but also the EMD model to be handled
via Property A.
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Chapter 5 Conclusion and Further Remarks

5.2 Further research directions

The methodology used in our unifying framework could be a useful tool for further develop-
ment of subgradient-based methods. We show some considerable topics for further application
and research directions.

In general, the methodology in this thesis could be modified for other types of methods
or problems. For instance, one can examine to consider modifications of Property A (as well
as the definition of the structured problems, and so on) for such situations.

There are important classes of convex optimization problems which were not addressed in
this thesis. It could be interesting to consider the possibility of application of our methodology
to them.

• For instance, the PGMs proposed in [12, 25, 26, 33] addressed the stochastic optimiza-
tion, namely, the oracle has an inexactness in a stochastic manner, while this thesis
employed the deterministic setting. It will be interesting to examine the stochastic
setting in our unifying framework.

• Another example is the class of uniformly convex functions which is a generalization of
the strong convexity: f is said to be uniformly convex on Q with coefficient σ ≥ 0 and
exponent τ ≥ 2 if

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y)− σ

τ
α(1− α)[ατ−1 + (1− α)τ−1] ∥x− y∥τ

for all x, y ∈ Q and α ∈ [0, 1]. See [62, Section 3.5] for an elegant treatment on uni-
formly convex functions. Some optimal PGMs [33, 45] are known using the multistage
procedure. The inexact oracle model [17] in the strongly convex case can also be applied
to the uniformly convex case giving nearly optimal PGMs.

• The smoothable functions investigated by Nesterov [50] is an important class of (non-
smooth) convex functions which can be efficiently minimized via the so called smoothing
technique. According to an extensive study by Beck and Teboulle [9], Method II applied
for the smooth problems belongs to the class of fast iterative methods, so that it can be
used to construct smoothing-based first-order methods.

For the weakly smooth problems (f ∈ Fν
M (Q)), the obtained convergence results (Theo-

rems 4.7.2 and 4.7.3) may be less practical since we will need to know M , ν, and σf ∈ σ(f)
in advance. In fact, there are adaptive PGMs [36, 54, 61] in the non strongly convex case.
An adaptive approach for parameters (M,ν, σf ) in the strongly convex case will valuable for
future study. For instance, one can examine various choices of weight and scaling parameters
tuning the general bound in Theorems 4.4.1 and 4.4.2. The presented choices shown in our
convergence results are just examples to ensure the optimality.

Some approaches for PGMs which were not employed in this thesis could be useful to
improve practicality. For instance, we did not discuss about the so called backtracking or line
search procedure [7, 47, 53, 54]. For smooth problems (f ∈ F1

L(Q)), this procedure can adapt
(unknown) Lipschitz constant L. For weakly smooth problems (f ∈ Fν

M (Q)), we can also
expect to adapt parameters (M,ν) as the Nesterov’s universal gradient method [54]. Another
considerable approach is the multistage or restarting procedure [33, 45, 47, 53]. This is useful
to construct optimal complexity methods in the strongly or the uniformly convex case.

The gradient sliding technique [37, 39, 40] for convex optimization problems, say,
minx∈Q{f(x) ≡ g(x)+h(x)}, enables to reduce the iteration complexity by distinguishing the
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5.2 Further research directions

call of two oracles for g(x) and h(x) instead of the one for f(x). Recall that the complexity
result in Section 4.7 holds in particular for the mixed smoothness structure (that is, g ∈ F1

L(Q)
and h ∈ Fν

M (Q)). It can be considered the gradient sliding technique for our methods in this
case.
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Chapter 6

Appendix

6.1 Lemmas for the proof of Theorem 4.6.4

In order to complete the proof of Theorem 4.6.4, we need to estimate upper bounds of 1/Sk
and

∑k
i=0 Si/Sk for the sequence {λk}k≥0 defined by (4.6.4):

λ0 = 1, λ2k+1 =

(
1 + Sk

σfσd
L− σ̄fσd

)
(λk+1 + Sk) (k ≥ 0).

Since λk+1 = Sk+1−Sk, writing r :=
σfσd

L−σ̄fσd
≥ 0, the sequence {Sk}k≥0 is determined by the

recurrence
S0 = 1, (Sk+1 − Sk)

2 = Sk+1(1 + rSk), k ≥ 0 (6.1.1)

where the root of the equation in Sk+1 takes the largest one, namely,

Sk+1 =
1 + (2 + r)Sk +

√
(1 + (2 + r)Sk)2 − 4S2

k

2
. (6.1.2)

The essentials of lemmas below are the same as [17, Lemma 4-7] excepting the replacement
of µ/L in the article by an arbitrary r ≥ 0.

Lemma A.1. For any sequence {Sk}k≥0 defined by (6.1.1) for r ≥ 0, we have

1

Sk
≤ min

{
4

(k + 1)(k + 4)
,

(
2

2 + r +
√
r2 + 4r

)k
}
, ∀k ≥ 0.

Proof. Since Sk+1 ≥ Sk, we have√
Sk+1 −

√
Sk =

Sk+1 − Sk√
Sk+1 +

√
Sk

≥ Sk+1 − Sk

2
√
Sk+1

(6.1.1)
=

1

2

√
1 + rSk ≥ 1

2
(6.1.3)

which shows
√
Sk ≥ k

2 +
√
S0 =

k+2
2 for all k ≥ 0. Then, we have

Sk − S0 =

k−1∑
i=0

(Si+1 − Si)
(6.1.1)
=

k−1∑
i=0

√
Si+1(1 + rSi) ≥

k−1∑
i=0

√
Si+1 ≥

k−1∑
i=0

i+ 3

2
=
k(k + 5)

4

which gives Sk ≥ S0 +
k(k+5)

4 = (k+1)(k+4)
4 . On the other hand, using (6.1.2) yields that

Sk+1

Sk
=

1
Sk

+ 2 + r +

√(
1
Sk

+ (2 + r)
)2

− 4

2
≥

2 + r +
√

(2 + r)2 − 4

2
=

2 + r +
√
r2 + 4r

2
(6.1.4)

for all k ≥ 0. Hence, we have Sk ≥ S0

(
2+r+

√
r2+4r

2

)k
=
(
2+r+

√
r2+4r

2

)k
. □

79



Chapter 6 Appendix

Remark . The linear convergence factor 2
2+r+

√
r2+4r

in the above lemma satisfies

1−
√

r

r + 1
≤ 2

2 + r +
√
r2 + 4r

≤
(
1 +

1

2

√
r

)−2

.

In fact, since(
1−

√
r

r + 1

)−1

=

√
r + 1√

r + 1−
√
r
=

√
r + 1(

√
r + 1 +

√
r) =

2 + 2r +
√
4r2 + 4r

2
,

we obtain(
1 +

1

2

√
r

)2

=
2 + r/2 +

√
4r

2
≤ 2 + r +

√
r2 + 4r

2
≤ 2 + 2r +

√
4r2 + 4r

2
=

(
1−

√
r

r + 1

)−1

.

Note that if σ̄f = σf and r =
σfσd

L−σ̄fσd
, then

√
r

r+1 =
√

σfσd

L . □

Lemma A.2. The sequence {Sk}k≥0 defined by (6.1.1) for r > 0 satisfies∑k
i=0 Si
Sk

≤ 1 +
√
1 + 4r−1

2
≤ 1 +

√
1

r
, ∀k ≥ 0.

Proof. Notice that γ := 1+
√
1+4r−1

2 satisfies(
1− 1

γ

)−1

=
γ

γ − 1
=

√
1 + 4r−1 + 1√
1 + 4r−1 − 1

=
(
√
1 + 4r−1 + 1)2

4r−1
=

2 + r +
√
r2 + 4r

2
.

Therefore, we obtain Sk
Sk+1

≤ 1 − 1
γ by (6.1.4). Now the result follows by induction: If∑k

i=0 Si/Sk ≤ γ holds for some k ≥ 0, we have∑k+1
i=0 Si
Sk+1

= 1 +
Sk
Sk+1

∑k
i=0 Si
Sk

≤ 1 +
γ − 1

γ
· γ = γ.

This proves the first inequality; the second can be verified from
√
1 + 4r−1 ≤ 1 + 2

√
r−1. □

Note that the result of Lemma A.2 is the same as [17, Lemma 5] because 1 + 2
√
r−1

√
r+

√
r+4

=

1+
√
1+4r−1

2 .

Lemma A.3. Let {Sk}k≥0 be defined as Lemma A.2 and {Tk}k≥0 be defined by (6.1.1) with

r := 0, namely T0 := 1 and Tk+1 :=
1+2Tk+

√
1+4Tk

2 for k ≥ 0. Then, we have∑k
i=0 Si
Sk

≤
∑k

i=0 Ti
Tk

, ∀k ≥ 0.

Proof. Due to the identity∑k
i=0 Si
Sk

= 1 +
k−1∑
i=0

Si
Sk

= 1 +
k−1∑
i=0

k−1∏
j=i

Sj
Sj+1

, k ≥ 0,
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it is enough to show that Sk
Sk+1

≤ Tk
Tk+1

for every k ≥ 0. Notice that we have

Sk+1

Sk
=

1+rSk
Sk

+ 2 +

√(
1+rSk
Sk

+ 2
)2

− 4

2
,

Tk+1

Tk
=

1
Tk

+ 2 +

√(
1
Tk

+ 2
)2

− 4

2
, (6.1.5)

which suggests us to prove 1+rSk
Sk

≥ 1
Tk

for k ≥ 0. It is true for k = 0 by S0 = T0. If it holds

for k ≥ 0, then, writing α := 1+rSk
Sk

≥ β := 1
Tk
, we obtain

1 + rSk+1

Sk+1
≥ 1 + rSk

Sk+1
=

Sk
Sk+1

α
(6.1.5)
=

2α

α+ 2 +
√

(α+ 2)2 − 4

≥ 2β

β + 2 +
√
(β + 2)2 − 4

(6.1.5)
=

Tk
Tk+1

β =
1

Tk+1

since Sk+1 ≥ Sk and x 7→ 2x

x+2+
√

(x+2)2−4
= 2

1+2x−1+
√
1+4x−1

is non-decreasing on (0,∞).

Hence, we claim 1+rSk
Sk

≥ 1
Tk

for all k ≥ 0 and therefore the proof is completed. □

Lemma A.4. Let {Tk}k≥0 be a sequence defined by (6.1.1) with r := 0, namely,

T0 := 1, Tk+1 :=
1 + 2Tk +

√
1 + 4Tk

2
(k ≥ 0).

Define {tk}k≥0 by t0 := 1 and tk+1 := Tk+1 − Tk for k ≥ 0. Then, the followings hold.

(i) t2k =
∑k

i=0 ti = Tk and tk+1 =
1+
√

1+4t2k
2 hold for k ≥ 0.

(ii) We have

k + 2

2
≤
√
(k + 1)(k + 4)

2
≤ tk ≤ k + 2

2
+

1

4
log(k + 1), ∀k ≥ 0.

(iii) We have ∑k
i=0 Ti
Tk

≤ 1

3
k +

1

6
log(k + 2) + 1, ∀k ≥ 0.

Proof. (i) The definition of tk yields Tk =
∑k

i=0 ti. The recurrence relation of Tk implies
t2k = (Tk − Tk−1)

2 = Tk and

tk+1 = Tk+1 − Tk
(6.1.2)
=

1 +
√
1 + 4Tk
2

=
1 +

√
1 + 4t2k

2
, ∀k ≥ 0.

(ii) Lemma A.1 yields tk =
√
Tk ≥

√
(k + 1)(k + 4)/4 ≥ (k + 2)/2 for k ≥ 0. The right hand

side for k = 0 is obvious. Analyzing the difference tk+1 − tk shows for k ≥ 0 that

tk+1− tk =
1 +

√
1 + 4t2k − 2tk

2
=

1

2
+

1

2
(√

1 + 4t2k + 2tk

) ≤ 1

2
+

1

2
(√

4t2k + 2tk

) =
1

2
+

1

8tk
.
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Therefore, we obtain

tk+1 ≤ t0 +
k + 1

2
+

1

8

k∑
i=0

1

ti
≤ k

2
+

3

2
+

1

8

k∑
i=0

2

i+ 2
≤ k

2
+

3

2
+

1

4
log(k + 2)

for all k ≥ 0.
(iii) The case k = 0 is obvious. Assume that the assertion is true for some k ≥ 0. Putting
Uk := 1

3k +
1
6 log(k + 2) + 1, we have∑k+1

i=0 Ti
Tk+1

= 1 +
Tk
Tk+1

∑k
i=0 Ti
Tk

≤ 1 +
Tk
Tk+1

Uk.

Hence, it remains to show 1 + Tk
Tk+1

Uk ≤ Uk+1 for k ≥ 0. In fact, (ii) concludes that

Uk

1 + Uk − Uk+1
=

3Uk

2 + 1
2 log

k+2
k+3

≥ 3

2
Uk ≥ tk+1 =

t2k+1

tk+1
=

Tk+1

Tk+1 − Tk
.

Taking the inverse and multiplying by Uk for both sides yield 1 + Tk
Tk+1

Uk ≤ Uk+1. □
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